Circulating Tumor Cell Dynamics Predicts Cancer Prognosis
By LabMedica International staff writers Posted on 23 Dec 2020 |

Image: The CELLSEARCH Circulating Tumor Cell (CTC) Test is used for determining the prognosis of patients with metastatic breast, prostate and colorectal cancer (Photo courtesy of Menarini Silicon Biosystems).
Metastatic breast cancer, also called stage IV breast cancer, means the cancer has traveled through the bloodstream to create tumors in the liver, lungs, brain, bones and/or other parts of the body. Approximately 20% to 30% of women with early stage breast cancer go on to develop metastatic disease.
Circulating tumor cells (CTCs), are tumor cells that diffuse into the circulating blood and serve an important role in the progress of cancer. During the early stages of cancer, CTCs undergo an epithelial‑mesenchymal transition and obtain a more invasive phenotype. The development of robust and clinical study-friendly techniques has led to thorough investigation of CTCs as biomarkers in stage IV breast cancer, where CTCs can frequently be detected.
Scientists at the Ulm University Hospital (Ulm, Germany) investigated the potential of CTCs, which are shed from the primary tumor into the bloodstream, to predict overall survival. They analyzed global pooled datasets from peer-reviewed and published studies of 4,079 patients with metastatic breast cancer, all of whom had undergone baseline and follow-up CTC measurements using the CellSearch test (Menarini Silicon Biosystems Inc, Huntington Valley, PA, USA). The median time from baseline to follow-up was 29 days. Changes in CTC levels between baseline and follow-up were analyzed to determine whether they were associated with overall survival.
The investigators reported that of the 2,961 patients who were CTC-positive at baseline, 1,855 remained CTC-positive after initiating treatment (positive/positive), and 1,106 patients had converted to CTC-negative (positive/negative). Of the 1,118 patients who were CTC-negative at baseline, 813 remained CTC-negative (negative/negative), while 305 had become CTC-positive (negative/positive). Median overall survival was greatest for patients who were negative/negative (47 months), followed by positive/negative (32.2 months), negative/positive (29.7 months), and positive/positive (17.9 months).
Compared to patients who were negative/negative, the risk of death was 215% greater for those who were positive/positive, 74% greater for negative/positive, and 52% greater for positive/negative. For patients who were CTC-positive at baseline, those who remained CTC-positive at follow-up had a 51% greater risk of death than those who converted to CTC-negative. Similar trends were found when CTC dynamics were analyzed by breast cancer subtype, including for hormone receptor-positive, HER2-positive, and triple-negative breast cancers. CTC dynamics were associated with overall survival for all breast cancer subtypes.
Wolfgang Janni, MD, PhD, a professor of Obstetrics and Gynecology and a senior author of the study, said, “With the increasing number of treatment options available to patients with metastatic breast cancer, being able to predict and monitor treatment responses rapidly will be critical to aiding treatment decisions. We were interested in determining whether treatment response and prognosis could be predicted earlier using a simple blood test.” The study was presented at the virtual 2020 San Antonio Breast Cancer Symposium, held December 8-11.
Circulating tumor cells (CTCs), are tumor cells that diffuse into the circulating blood and serve an important role in the progress of cancer. During the early stages of cancer, CTCs undergo an epithelial‑mesenchymal transition and obtain a more invasive phenotype. The development of robust and clinical study-friendly techniques has led to thorough investigation of CTCs as biomarkers in stage IV breast cancer, where CTCs can frequently be detected.
Scientists at the Ulm University Hospital (Ulm, Germany) investigated the potential of CTCs, which are shed from the primary tumor into the bloodstream, to predict overall survival. They analyzed global pooled datasets from peer-reviewed and published studies of 4,079 patients with metastatic breast cancer, all of whom had undergone baseline and follow-up CTC measurements using the CellSearch test (Menarini Silicon Biosystems Inc, Huntington Valley, PA, USA). The median time from baseline to follow-up was 29 days. Changes in CTC levels between baseline and follow-up were analyzed to determine whether they were associated with overall survival.
The investigators reported that of the 2,961 patients who were CTC-positive at baseline, 1,855 remained CTC-positive after initiating treatment (positive/positive), and 1,106 patients had converted to CTC-negative (positive/negative). Of the 1,118 patients who were CTC-negative at baseline, 813 remained CTC-negative (negative/negative), while 305 had become CTC-positive (negative/positive). Median overall survival was greatest for patients who were negative/negative (47 months), followed by positive/negative (32.2 months), negative/positive (29.7 months), and positive/positive (17.9 months).
Compared to patients who were negative/negative, the risk of death was 215% greater for those who were positive/positive, 74% greater for negative/positive, and 52% greater for positive/negative. For patients who were CTC-positive at baseline, those who remained CTC-positive at follow-up had a 51% greater risk of death than those who converted to CTC-negative. Similar trends were found when CTC dynamics were analyzed by breast cancer subtype, including for hormone receptor-positive, HER2-positive, and triple-negative breast cancers. CTC dynamics were associated with overall survival for all breast cancer subtypes.
Wolfgang Janni, MD, PhD, a professor of Obstetrics and Gynecology and a senior author of the study, said, “With the increasing number of treatment options available to patients with metastatic breast cancer, being able to predict and monitor treatment responses rapidly will be critical to aiding treatment decisions. We were interested in determining whether treatment response and prognosis could be predicted earlier using a simple blood test.” The study was presented at the virtual 2020 San Antonio Breast Cancer Symposium, held December 8-11.
Latest Pathology News
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more