LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Remarkably Stable Virus-Like Positive Controls for COVID-19 Assays

By LabMedica International staff writers
Posted on 09 Dec 2020
Print article
Image: Illustration and transmission electron microscopy (TEM) image of SARS-CoV-2 positive control made from plant virus-based nanoparticles (left) and bacteriophage nanoparticles (right) (Photo courtesy of Soo Khim Chan/ACS Nano)
Image: Illustration and transmission electron microscopy (TEM) image of SARS-CoV-2 positive control made from plant virus-based nanoparticles (left) and bacteriophage nanoparticles (right) (Photo courtesy of Soo Khim Chan/ACS Nano)
Researchers have prepared a new class of positive control materials to validate the molecular assays that have been developed to detect and diagnose COVID-19 infection.

Nucleic acid tests, especially reverse transcription polymerase chain reaction (RT-PCR), have become the standards for early detection of COVID-19 infection. Positive controls for the molecular assays have been developed to validate each test and to provide high accuracy. However, most available positive controls require cold-chain distribution and cannot serve as full-process controls.

To overcome these shortcomings, investigators at the University of California, San Diego (USA) have developed new and improved positive controls. The investigators developed two different controls: one made from plant virus nanoparticles, the other from bacteriophage nanoparticles.

The plant virus-based controls were made using cowpea chlorotic mottle virus. The investigators removed the RNA contents of the virus and replaced them with a synthesized RNA template containing specific sequences from the SARS-CoV-2 virus.

Plasmids (segments of circular DNA) were used to make the bacteriophage-based controls. Plasmids containing gene sequences from the SARS-CoV-2 virus, as well as genes coding for surface proteins of the bacteriophage Qbeta, were loaded into bacteria. The bacteria then generated virus-like particles with SARS-CoV-2 RNA sequences on the inside and Qbeta bacteriophage proteins on the outside.

Results revealed that the positive control materials were detected accurately in COVID-19 molecular assays. The controls were stable and could be stored for a week at temperatures up to 40 degrees Celsius while retaining 70% of their activity after one month of storage.

"Our goal is to make an impact not necessarily in the hospital, where you have state-of-the-art facilities, but in low-resource, under served areas that may not have the sophisticated infrastructure or trained personnel," said senior author Dr. Nicole Steinmetz, professor of nanoengineering at the University of California, San Diego. "It is a relatively simple nanotechnology approach to make low-tech assays more accurate. "This could help break down some of the barriers to mass testing of under served populations in the United States and across the world."

The new COVID-19 positive controls were described in the November 25, 2020, online edition of the journal ACS Nano.

Related Links:
University of California San Diego

Gold Member
Multiplex Genetic Analyzer
MassARRAY Dx Analyzer (Europe only)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.