New COVID-19 Testing Approach That Measures Immune Response Can Be Combined with Standard PCR Tests for Accurate Diagnosis
By LabMedica International staff writers Posted on 08 Dec 2020 |

Illustration
A new approach for COVID-19 testing that detects a distinct pattern of immune gene expression in infected individuals could be used as a check against possible errors generated by the standard tests that directly detect the SARS-CoV-2 virus.
Researchers from University of California, San Francisco (UCSF; San Francisco, CA, USA) and Chan Zuckerberg Biohub (San Francisco, CA, USA) have developed the new COVID-19 testing approach that measures a patient’s immune response for better diagnosis. The new testing approach analyzes completely different molecules - from the person infected, rather than from the virus that infects the person – although it can be implemented using the same PCR technology on the same nasal swab samples. It could be used as a standalone test, or even combined into the same testing panels used in standard PCR tests to detect the virus. Combining the technologies could lessen the chances of false negative or false positive results, according to the researchers.
The UCSF scientists created three proof-of-concept versions of the new test - one based on readouts of gene activity from three key genes, one based on readouts from 10 genes, and one based on 27 genes. The tests independently detected COVID-19 infection in clinically confirmed cases, increasing in sensitivity with the number of genes included. The researchers aim to use one of these measures of gene activation both to flag false negative viral PCR tests, in which direct viral detection fails, and to rule out false positive results, which may arise from cross-contamination between samples in testing labs.
To determine which changes in gene activity were distinctive to SARS-CoV-2 infection the researchers first surveyed all the genetic material in swab samples from the upper respiratory tract, so that they could identify the most important and predictive indicators. The researchers examined samples from patients with respiratory symptoms who were tested for COVID-19 as a possible explanation of their illness. The tests showed many of the patients did have COVID-19, but some of them turned out to be infected with more common respiratory viruses (like the flu) or to be suffering from nonviral conditions.
With computer algorithms and a great deal of number crunching, the UCSF scientists were able to identify a distinct pattern of gene expression associated with a tamping down of specific immune responses that occurs early during SARS-CoV-2 infection. The changes differed from those seen in other viral respiratory infections or non-viral respiratory illnesses, allowing for a specific diagnosis of COVID-19. The pattern of immunosuppressive gene expression the researchers identified in COVID-19 may explain the stealthy nature of this highly transmissible virus, according to the researchers.
"Without even having to detect the virus itself, these tests to measure changes in the expression of immune-related genes can determine whether or not someone has COVID-19," said co-senior study author Chaz Langelier, MD, PhD, assistant professor in the Division of Infectious Diseases in the UCSF Department of Medicine.
"We have concluded from our work that there is an immunosuppressive effect taking place that prevents symptoms from developing early during infection despite high levels of viral replication. It's a brilliant strategy, if you're a virus," added Langelier. "Our findings of a diminished inflammatory response by the innate immune system suggest that treatments that suppress the immune system early during COVID-19 infection are unlikely to be beneficial."
Related Links:
University of California, San Francisco
Chan Zuckerberg Biohub
Researchers from University of California, San Francisco (UCSF; San Francisco, CA, USA) and Chan Zuckerberg Biohub (San Francisco, CA, USA) have developed the new COVID-19 testing approach that measures a patient’s immune response for better diagnosis. The new testing approach analyzes completely different molecules - from the person infected, rather than from the virus that infects the person – although it can be implemented using the same PCR technology on the same nasal swab samples. It could be used as a standalone test, or even combined into the same testing panels used in standard PCR tests to detect the virus. Combining the technologies could lessen the chances of false negative or false positive results, according to the researchers.
The UCSF scientists created three proof-of-concept versions of the new test - one based on readouts of gene activity from three key genes, one based on readouts from 10 genes, and one based on 27 genes. The tests independently detected COVID-19 infection in clinically confirmed cases, increasing in sensitivity with the number of genes included. The researchers aim to use one of these measures of gene activation both to flag false negative viral PCR tests, in which direct viral detection fails, and to rule out false positive results, which may arise from cross-contamination between samples in testing labs.
To determine which changes in gene activity were distinctive to SARS-CoV-2 infection the researchers first surveyed all the genetic material in swab samples from the upper respiratory tract, so that they could identify the most important and predictive indicators. The researchers examined samples from patients with respiratory symptoms who were tested for COVID-19 as a possible explanation of their illness. The tests showed many of the patients did have COVID-19, but some of them turned out to be infected with more common respiratory viruses (like the flu) or to be suffering from nonviral conditions.
With computer algorithms and a great deal of number crunching, the UCSF scientists were able to identify a distinct pattern of gene expression associated with a tamping down of specific immune responses that occurs early during SARS-CoV-2 infection. The changes differed from those seen in other viral respiratory infections or non-viral respiratory illnesses, allowing for a specific diagnosis of COVID-19. The pattern of immunosuppressive gene expression the researchers identified in COVID-19 may explain the stealthy nature of this highly transmissible virus, according to the researchers.
"Without even having to detect the virus itself, these tests to measure changes in the expression of immune-related genes can determine whether or not someone has COVID-19," said co-senior study author Chaz Langelier, MD, PhD, assistant professor in the Division of Infectious Diseases in the UCSF Department of Medicine.
"We have concluded from our work that there is an immunosuppressive effect taking place that prevents symptoms from developing early during infection despite high levels of viral replication. It's a brilliant strategy, if you're a virus," added Langelier. "Our findings of a diminished inflammatory response by the innate immune system suggest that treatments that suppress the immune system early during COVID-19 infection are unlikely to be beneficial."
Related Links:
University of California, San Francisco
Chan Zuckerberg Biohub
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more