LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Highly Automated Microlab Half the Size of Credit Card Detects COVID-19 in 30 Minutes

By LabMedica International staff writers
Posted on 06 Nov 2020
Print article
Illustration
Illustration
By leveraging the so-called “lab on a chip” technology and the cutting-edge genetic editing technique known as CRISPR, researchers have created a highly automated device that can identify the presence of the novel coronavirus in just a half-hour.

The microlab test developed by scientists at Stanford Medicine (Stanford, CA, USA) takes advantage of the fact that coronaviruses like SARS-COV-2, the virus that causes COVID-19, leaves behind tiny genetic fingerprints wherever they go in the form of strands of RNA, the genetic precursor of DNA. If the coronavirus’s RNA is present in a swab sample, the person from whom the sample was taken is infected. To initiate a test, liquid from a nasal swab sample is dropped into the microlab, which uses electric fields to extract and purify any nucleic acids like RNA that it might contain. The purified RNA is then converted into DNA and then replicated many times over using a technique known as isothermal amplification.

Next, the team used an enzyme called CRISPR-Cas12 – a sibling of the CRISPR-Cas9 enzyme associated with this year’s Nobel Prize in Chemistry – to determine if any of the amplified DNA came from the coronavirus. If so, the activated enzyme triggers fluorescent probes that cause the sample to glow. Here also, electric fields play a crucial role by helping concentrate all of the important ingredients – the target DNA, the CRISPR enzyme and the fluorescent probes – together into a tiny space smaller than the width of a human hair, dramatically increasing the chances they will interact.

The team created its device on a shoestring budget of about USD 5,000. For now, the DNA amplification step must be performed outside of the chip, but the researchers expects that within months their lab will integrate all the steps into a single chip. Several human-scale diagnostic tests use similar gene amplification and enzyme techniques, but they are slower and more expensive than the new test, which provides results in just 30 minutes. Other tests can require more manual steps and can take several hours. The researchers say their approach is not specific to COVID-19 and could be adapted to detect the presence of other harmful microbes, such as E. coli in food or water samples, or tuberculosis and other diseases in the blood.

“The microlab is a microfluidic chip just half the size of a credit card containing a complex network of channels smaller than the width of a human hair,” said the study’s senior author, Juan G. Santiago, the Charles Lee Powell Foundation Professor of mechanical engineering at Stanford and an expert in microfluidics, a field devoted to controlling fluids and molecules at the microscale using chips. “Our chip is unique in that it uses electric fields to both purify nucleic acids from the sample and to speed up chemical reactions that let us know they are present.”

Related Links:
Stanford Medicine

Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory Bacterial Panel
Real Respiratory Bacterial Panel 2
New
Malaria Test
STANDARD Q Malaria P.f/Pan Ag

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.