LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

COVID-19 Test Uses DNA Nanoswitch Technology to Detect SARS-CoV-2 Virus

By LabMedica International staff writers
Posted on 05 Nov 2020
Print article
Image: COVID-19 Test Uses DNA Nanoswitch Technology to Detect SARS-CoV-2 Virus (Photo courtesy of Sebastian Stankiewicz, Boston Children`s)
Image: COVID-19 Test Uses DNA Nanoswitch Technology to Detect SARS-CoV-2 Virus (Photo courtesy of Sebastian Stankiewicz, Boston Children`s)
An easy diagnostic test for COVID-19 based on DNA nanoswitch technology could offer a new way of detecting SARS-CoV-2, the virus causing the disease.

Scientists from the Program in Cellular and Molecular Medicine (PCMM) at Boston Children’s Hospital (Boston, MA, USA) have been developing DNA nanoswitch technology for several years, allowing them to pivot quickly to apply it to COVID-19 diagnosis. The DNA nanoswitch starts with a piece of single-strand DNA. Attached to either end of that DNA are compounds that interact with molecules that a researcher wants to study - such as antibodies to a protein made by a virus. Once added to a blood serum sample, the DNA/antibody nanoswitches float along as sentries looking for their targets. Once they find them, the antibodies bind tightly. The bond between the pair of antibodies and the protein causes the DNA to change shape, shifting to a closed circle or loop shape. If no target is found, the DNA strand remains open in an unlooped position.

The nanoswitch technology developed by the PCMM scientists is not yet used clinically but has shown promise in research studies for other diseases, including detection of prostate specific antigen, a marker of prostate health. For COVID-19, the scientists are engineering a trifecta of DNA nanoswitches which can detect the spike protein of the SARS-CoV-2 virus that causes COVID-19, antibodies produced after exposure to the virus, or RNA made by the virus itself. Test results are read out by a simple gel electrophoresis system, a common analytical tool in many laboratories that sorts DNA and proteins by size and shape based on their downward movement through a gel. With a positive result - a closed loop - the sample seems to get caught and slows down, staying higher in the gel. A negative result passes through the gel to the bottom.

The scientists aim to simplify things even further for rapid, on-site COVID-19 testing by developing a test that is as easy as a pee stick, but as sophisticated and accurate as a laboratory system. The rapid test they are developing will not only detect the presence of COVID-19 antibodies, but also provide more information about those antibodies.

“Our technology, a DNA nanoswitch, is a new way of probing a test sample for evidence of infection,” said Wesley Wong, PhD, who is leading the team developing the new COVID-19 test at the PCMM. “We hope to get some insight into how the immune system responds to infection or vaccination, and maybe even identify the presence of antibodies capable of killing, or neutralizing the virus. Preliminary results on patient serum samples show the concept is promising.”

Related Links:
Boston Children’s Hospital

Gold Member
COVID-19 TEST READER
COVID-19-CHECK-1 EASY READER+
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Community-Acquired Pneumonia Test
RIDA UNITY CAP Bac
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.