LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Host Genetic, Environmental Factors Influence Urinary Tract Microbiome

By LabMedica International staff writers
Posted on 14 Aug 2020
Graphic representation of how the urinary tract microbiome in older women exhibits host genetic and environmental influences (Photo courtesy of King\'s College London).
Graphic representation of how the urinary tract microbiome in older women exhibits host genetic and environmental influences (Photo courtesy of King\'s College London).
The urinary microbiome is a relatively unexplored niche that varies with gender. Urinary microbes, especially in aging populations, are associated with morbidity. Both genetic and environmental factors influence the makeup of the urinary tract microbiome of older women.

The term “urine microbiome” is being proposed as a term denouncing the old paradigm, that urine in the bladder is usually sterile. The bacterial species include lactobacilli, obligate anaerobes, Gardnerella vaginalis, non-hemolytic streptococci, Mycoplasma and Ureaplasma amongst others.

Medical Scientists from King's College London (London, UK) carried out a large-scale study exploring factors defining urinary microbiome composition in community-dwelling older adult women without clinically active infection. Using 1,600 twins, they estimated the contribution of genetic and environmental factors to microbiome variation.

The investigators performed 16S rRNA sequencing of midstream urine samples from the mostly post-menopausal women from the TwinsUK cohort. When they compared the composition of these samples to the previously published microbiomes of other body sites, they found the diversity of the urine dataset to be similar to that of the vaginal dataset, but that it was not as diverse as the stool dataset. Within the urinary tract microbiome, they identified a set of 61 core microbial taxa. As compared to the gut microbiome dataset, the urinary tract microbiome included more Actinobacteria, Fusobacteria, and Proteobacteria, but fewer Bacteroidetes, Firmicutes, and Verrumicrobia. For a subset of participants, they also generated shotgun metagenomic data in addition to the 16S data. The core microbiome they identified through the 16S data was largely recapitulated in the metagenomic dataset.

By using three different measurements, heritability, family segregation, and ancestry-based analyses, they found a significant effect of host genetics on the composition of the urine microbiome. In particular, for the core microbiome, they found that nearly a quarter of those variants that were found in at least 5% of participants had heritability estimates larger than 10%. One of these, Escherichia-Shigella, has been implicated in urinary tract infections and suggests host genetics may contribute to such infections.

The authors concluded that the urinary microbiome was distinct and apparently unrelated to stool microbiome. It shows a significant contribution of host genetics. Key species known to be clinically relevant were among the most heritable microbes. The study was published on July 21, 2020 in the journal Cell Host & Microbe.

Related Links:

King's College London

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more