We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes

By LabMedica International staff writers
Posted on 17 Jul 2020
Print article
Image: Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes (Photo courtesy of University of Oxford)
Image: Oxford University’s Rapid COVID-19 Test Detects SARS-CoV-2 Within 30-45 Minutes (Photo courtesy of University of Oxford)
Scientists have developed a rapid test which detects the presence of the SARS-CoV-2 virus and could be adapted for use in settings ranging from community care, schools, airports or home self-testing.

The test for the detection of COVID-19 has been developed by the University of Oxford’s Department of Engineering Science and Oxford Suzhou Centre for Advanced Research (OSCAR Oxford, UK). The Oxford-OSCAR team has designed primers with high specificity to confirm presence of the virus in infected people, adapted from an established technology known as RT-LAMP (reverse transcription-loop mediated isothermal amplification). It is a simplified one-step version of a viral RNA test and can be used in the field without specialist equipment or training. The simple colorimetric result is read by eye or fluorescent display, meaning there is no need for additional tools to analyze results. A Bluetooth-linked fluorescent detection instrument can link the test result into a laboratory information system, so that test results can be tracked.

The test produces results within 30-45 minutes and detects SARS-CoV-19 with great sensitivity and specificity using throat/nasal swabs directly to identify individuals carrying the virus. Clinical trials have generated comparable results with laboratory tests, demonstrating reliability, and the results will be published shortly. The test will soon be certified with CE-mark. It will be available in quantity with the commercial product name Oxsed RaViD Direct at a cost of no more than GBP 20 per test, which is considerably cheaper than most of the products currently on market.

“By designing the specific primers and controlling the biochemical reaction, we are able to eliminate the non-specific reactions that cause false positives and make our RT-LAMP test robust. And the Oxford test can be transported and stored at ambient temperature without need for cold chain, which makes shipping and distribution much easier,” said Professor Wei Huang who designed the primers to target the viral RNA.

“Our test is ideal for use in community or field settings by lay persons and allows immediate decisions to be made. Immediate applications are: returning to work/education (i.e. schools, universities, companies) and making quarantine decision (e.g. care homes, hospitals, temporary migrants, tourists). Use of such a test could be crucial to economic recovery globally,” said Prof Zhanfeng Cui, the Director of OSCAR.

Related Links:
University of Oxford

Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit
New
Coagulation Analyzer
CS-2400

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.