3M and MIT Researchers Developing Low-Cost COVID-19 Diagnostic Test that Delivers Highly Accurate Results in Minutes
By LabMedica International staff writers Posted on 15 Jul 2020 |

Image: 3M and MIT Researchers Developing Low-Cost COVID-19 Diagnostic Test that Delivers Highly Accurate Results in Minutes (Photo courtesy of 3M)
3M (St. Paul, MN, USA) and researchers at MIT (Cambridge, MA, USA) are testing a new rapid COVID-19 test that detects the novel coronavirus.
Accelerated research is underway to learn if a simple-to-use, diagnostic device can produce highly accurate results within minutes and is feasible to mass manufacture. The test would detect viral antigens and deliver highly accurate results within minutes via a paper-based device. The test could be administered at the point-of-care and would not need to be sent to labs for testing. This effort draws on 3M’s deep technological expertise in biomaterials and bioprocessing along with the company’s expertise in global medical device manufacturing. The 3M team is led by scientists, manufacturing and regulatory experts from its corporate research laboratories and health care business group. The research team at MIT is led by Professor Hadley Sikes at the Institute’s Department of Chemical Engineering. The Sikes lab specializes in the creation and development of molecular technologies to improve the performance of rapid, cellulose-based protein tests. The teams at 3M and MIT believe a diagnostic test can be deployed once validated. Manufacturing equipment can be scaled to produce millions of units per day.
The US National Institute of Health has selected the rapid COVID-19 test for accelerated development and commercialization support, after rigorous review by an expert panel. The test is in the Rapid Acceleration of Diagnostics Tech (RADx Tech) program, an aggressively-paced COVID-19 diagnostics initiative from the NIH’s National Institute of Biomedical Imaging and Bioengineering. The teams at 3M and MIT are prepared to collaborate with the government’s RADx Tech program to demonstrate the test’s capability and to deploy it as quickly as possible. RADx Tech’s phased innovation funnel is initially supporting a four-week period of intense research to demonstrate the test concept works and can be commercialized on a large scale. The project has received USD 500,000 in validation funding from RADx Tech and is eligible for further investment in later stages of the development funnel.
“We are excited to collaborate with Professor Hadley Sikes and the team at MIT. Our approach is ambitious, but our collective expertise can make a difference for people around the world, so we owe it to ourselves and society to give it our best effort,” said John Banovetz, 3M Senior Vice President for Innovation and Stewardship and Chief Technology Officer. “This is another step demonstrating 3M’s leadership in the fight against COVID-19. We are seeking to improve the speed, accessibility and affordability of testing for the virus, a major step in helping to prevent its spread.”
“There is a pressing need for a highly scalable rapid test,” said Sikes. “We are working with our colleagues at 3M to overcome the challenges to move this research from lab to impact, and find an innovative path forward to manufacture it at scale. Joining forces with 3M and the NIH has greatly enhanced our collective efforts toward swift detection of the virus, and a potential tool to help mitigate and contain this public health crisis.”
Related Links:
3M
MIT
Accelerated research is underway to learn if a simple-to-use, diagnostic device can produce highly accurate results within minutes and is feasible to mass manufacture. The test would detect viral antigens and deliver highly accurate results within minutes via a paper-based device. The test could be administered at the point-of-care and would not need to be sent to labs for testing. This effort draws on 3M’s deep technological expertise in biomaterials and bioprocessing along with the company’s expertise in global medical device manufacturing. The 3M team is led by scientists, manufacturing and regulatory experts from its corporate research laboratories and health care business group. The research team at MIT is led by Professor Hadley Sikes at the Institute’s Department of Chemical Engineering. The Sikes lab specializes in the creation and development of molecular technologies to improve the performance of rapid, cellulose-based protein tests. The teams at 3M and MIT believe a diagnostic test can be deployed once validated. Manufacturing equipment can be scaled to produce millions of units per day.
The US National Institute of Health has selected the rapid COVID-19 test for accelerated development and commercialization support, after rigorous review by an expert panel. The test is in the Rapid Acceleration of Diagnostics Tech (RADx Tech) program, an aggressively-paced COVID-19 diagnostics initiative from the NIH’s National Institute of Biomedical Imaging and Bioengineering. The teams at 3M and MIT are prepared to collaborate with the government’s RADx Tech program to demonstrate the test’s capability and to deploy it as quickly as possible. RADx Tech’s phased innovation funnel is initially supporting a four-week period of intense research to demonstrate the test concept works and can be commercialized on a large scale. The project has received USD 500,000 in validation funding from RADx Tech and is eligible for further investment in later stages of the development funnel.
“We are excited to collaborate with Professor Hadley Sikes and the team at MIT. Our approach is ambitious, but our collective expertise can make a difference for people around the world, so we owe it to ourselves and society to give it our best effort,” said John Banovetz, 3M Senior Vice President for Innovation and Stewardship and Chief Technology Officer. “This is another step demonstrating 3M’s leadership in the fight against COVID-19. We are seeking to improve the speed, accessibility and affordability of testing for the virus, a major step in helping to prevent its spread.”
“There is a pressing need for a highly scalable rapid test,” said Sikes. “We are working with our colleagues at 3M to overcome the challenges to move this research from lab to impact, and find an innovative path forward to manufacture it at scale. Joining forces with 3M and the NIH has greatly enhanced our collective efforts toward swift detection of the virus, and a potential tool to help mitigate and contain this public health crisis.”
Related Links:
3M
MIT
Latest COVID-19 News
- New Immunosensor Paves Way to Rapid POC Testing for COVID-19 and Emerging Infectious Diseases
- Long COVID Etiologies Found in Acute Infection Blood Samples
- Novel Device Detects COVID-19 Antibodies in Five Minutes
- CRISPR-Powered COVID-19 Test Detects SARS-CoV-2 in 30 Minutes Using Gene Scissors
- Gut Microbiome Dysbiosis Linked to COVID-19
- Novel SARS CoV-2 Rapid Antigen Test Validated for Diagnostic Accuracy
- New COVID + Flu + R.S.V. Test to Help Prepare for `Tripledemic`
- AI Takes Guesswork Out Of Lateral Flow Testing
- Fastest Ever SARS-CoV-2 Antigen Test Designed for Non-Invasive COVID-19 Testing in Any Setting
- Rapid Antigen Tests Detect Omicron, Delta SARS-CoV-2 Variants
- Health Care Professionals Showed Increased Interest in POC Technologies During Pandemic, Finds Study
- Set Up Reserve Lab Capacity Now for Faster Response to Next Pandemic, Say Researchers
- Blood Test Performed During Initial Infection Predicts Long COVID Risk
- Low-Cost COVID-19 Testing Platform Combines Sensitivity of PCR and Speed of Antigen Tests
- Finger-Prick Blood Test Identifies Immunity to COVID-19
- Quick Test Kit Determines Immunity Against COVID-19 and Its Variants
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
RNA Blood Test Detects Cancers and Resistance to Treatment
A newly developed blood test offers the ability to detect cancer, understand how cancer resists treatments, and assess tissue damage from non-cancerous conditions. This innovative test, created by researchers... Read more
IL-6 Outperforms Traditional Tests for Early Sepsis Detection
Sepsis, a severe and life-threatening condition caused by the immune system’s exaggerated response to infection, remains a major cause of death globally, responsible for approximately 11 million fatalities... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read more
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more