Biomarker Data Improves Risk Prediction for Pancreatic Cancer
By LabMedica International staff writers Posted on 07 May 2020 |

Image: Histopathological micrograph of pancreatic adenocarcinoma arising in the pancreas head region (Photo courtesy of KGH).
Pancreatic cancer risk prediction models based on clinical factors may be refined and improved by bringing in other types of data, including germline genetic risk variant and blood-based biomarker data.
Pancreatic cancer is the third leading cause of cancer death in the USA, and 80% of patients present with advanced, incurable disease. Risk markers for pancreatic cancer have been characterized, but combined models are not used clinically to identify individuals at high risk for the disease.
A team of scientists led by those at the Harvard T.H. Chan School of Public Health (Boston, MA, USA) used a nested case-control approach, and brought together genetic, clinical, and other data for 500 individuals with primary pancreatic adenocarcinoma and 1,091 matched control individuals, enrolled through four prospective studies, using these data to develop several pancreatic cancer risk models based on clinical data alone, genetic and clinical factors, or genetic, clinical, and biomarker data.
Genomic DNA was extracted from peripheral blood leucocytes of cohort participants. Details on genotyping, variant imputation, and quality control procedures were previously reported. Circulating levels of proinsulin (pmol/L), adiponectin (mg/mL), interleukin-6 (IL-6; pg/mL), and branched-chain amino acids (BCAAs; mmol/L) were measured and represent four major categories of circulating markers related to pancreatic cancer risk (insulin resistance, adipokines, inflammation, and peripheral tissue catabolism, respectively). The team dichotomized circulating adiponectin with a cut off of 4.4 mg/mL).
When the team applied those models to almost 1,000 more cases or controls followed for up to 10 years, it found that the integrated model provided the most accurate pancreatic risk prediction, surpassing risk estimates done using clinical data without genetic or blood biomarker insights. Model discrimination showed an area under ROC curve of 0.62 via cross-validation. The final integrated model identified 3.7% of men and 2.6% of women who had at least three times greater than average risk in the ensuing 10 years. Individuals within the top risk percentile had a 4% risk of developing pancreatic cancer by age 80 years and 2% 10-year risk at age 70 years.
The authors wrote that because all of their subjects were enrolled in prospective cohorts, all risk factor data and circulating markers were measured before the cases' diagnosis of pancreatic cancer, faithfully recapitulates the situation faced by primary care physicians, where decisions related to disease screening are made in the prediagnostic setting using data collected in the several years prior to cancer diagnosis.
Peter Kraft, PhD, a Professor of Epidemiology and senior author of the study, said, “Like most cancers, pancreatic cancer is multifactorial. The more we are able to combine information from multiple domains, the better we will become at identifying those who could benefit from screening. These factors have been investigated individually and in this study, we wanted to examine the combined effect of clinical factors, common genetic predisposition variants, and circulating biomarkers.” The study was published on April 22, 2020 in the journal Cancer Epidemiology, Biomarkers, and Prevention.
Related Links:
Harvard T.H. Chan School of Public Health
Pancreatic cancer is the third leading cause of cancer death in the USA, and 80% of patients present with advanced, incurable disease. Risk markers for pancreatic cancer have been characterized, but combined models are not used clinically to identify individuals at high risk for the disease.
A team of scientists led by those at the Harvard T.H. Chan School of Public Health (Boston, MA, USA) used a nested case-control approach, and brought together genetic, clinical, and other data for 500 individuals with primary pancreatic adenocarcinoma and 1,091 matched control individuals, enrolled through four prospective studies, using these data to develop several pancreatic cancer risk models based on clinical data alone, genetic and clinical factors, or genetic, clinical, and biomarker data.
Genomic DNA was extracted from peripheral blood leucocytes of cohort participants. Details on genotyping, variant imputation, and quality control procedures were previously reported. Circulating levels of proinsulin (pmol/L), adiponectin (mg/mL), interleukin-6 (IL-6; pg/mL), and branched-chain amino acids (BCAAs; mmol/L) were measured and represent four major categories of circulating markers related to pancreatic cancer risk (insulin resistance, adipokines, inflammation, and peripheral tissue catabolism, respectively). The team dichotomized circulating adiponectin with a cut off of 4.4 mg/mL).
When the team applied those models to almost 1,000 more cases or controls followed for up to 10 years, it found that the integrated model provided the most accurate pancreatic risk prediction, surpassing risk estimates done using clinical data without genetic or blood biomarker insights. Model discrimination showed an area under ROC curve of 0.62 via cross-validation. The final integrated model identified 3.7% of men and 2.6% of women who had at least three times greater than average risk in the ensuing 10 years. Individuals within the top risk percentile had a 4% risk of developing pancreatic cancer by age 80 years and 2% 10-year risk at age 70 years.
The authors wrote that because all of their subjects were enrolled in prospective cohorts, all risk factor data and circulating markers were measured before the cases' diagnosis of pancreatic cancer, faithfully recapitulates the situation faced by primary care physicians, where decisions related to disease screening are made in the prediagnostic setting using data collected in the several years prior to cancer diagnosis.
Peter Kraft, PhD, a Professor of Epidemiology and senior author of the study, said, “Like most cancers, pancreatic cancer is multifactorial. The more we are able to combine information from multiple domains, the better we will become at identifying those who could benefit from screening. These factors have been investigated individually and in this study, we wanted to examine the combined effect of clinical factors, common genetic predisposition variants, and circulating biomarkers.” The study was published on April 22, 2020 in the journal Cancer Epidemiology, Biomarkers, and Prevention.
Related Links:
Harvard T.H. Chan School of Public Health
Latest Pathology News
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more