LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Beacons Technology Used in Rapid COVID-19 Tests

By LabMedica International staff writers
Posted on 22 Apr 2020
Image: Fred Russell Kramer, professor of microbiology, biochemistry and molecular genetics at New Jersey Medical School (Photo courtesy of Rutgers University)
Image: Fred Russell Kramer, professor of microbiology, biochemistry and molecular genetics at New Jersey Medical School (Photo courtesy of Rutgers University)
The molecular beacons technology invented by researchers at Rutgers University (New Brunswick, NJ, USA) will be used in about 50,000 COVID-19 tests produced per day by Abbott (Lake Forest, IL, USA). Abbott’s COVID-19 rapid test, which has received Food and Drug Administration (FDA) emergency use authorization, includes the molecular beacons technology that has been invented and perfected by Rutgers scientists over the last decade. The test, which uses a nose swab, takes less than 15 minutes to complete and can determine if the virus has invaded a cell, taken over its molecular machinery and is making new viruses.

The technology provides powerful tools for imaging RNA in living cells and can determine if COVID-19 is present in a clinical sample. Molecular beacons can bind to a target nucleic acid if it is present in the test solution. If COVID-19 RNA is detected, the molecular beacons wrap themselves around the amplified target nucleic acids, which provide a blueprint of what is occurring in cells, changing their shape and shining a light to signal the presence of the virus.

Molecular beacons are added to the solutions in which clinical assays are carried out, and the reaction tubes are sealed before amplification of the target occurs. The test tubes are never opened again and the only things that leave the test tube are the differently colored fluorescent signals that indicate which target molecules are present. By virtue of the time it takes to generate those signals, the results indicate how abundant the different targets were in the original sample. Since the test tubes remain sealed, the amplified targets cannot escape to contaminate samples that have not yet been tested.

“As molecular diagnostic researchers, it is gratifying when you can help improve lives in a meaningful way, especially during times like these amid a global pandemic,” said Fred Russell Kramer, professor of microbiology, biochemistry and molecular genetics, Public Health Research Institute, New Jersey Medical School.


Gold Member
Universal Transport Solution
Puritan®UniTranz-RT
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more