LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Combined Biopsy Method Improves Prostate Cancer Diagnosis

By LabMedica International staff writers
Posted on 16 Mar 2020
Image: Testing with combined biopsy method improves prostate cancer diagnosis (Photo courtesy of the National Institutes of Health Clinical Center).
Image: Testing with combined biopsy method improves prostate cancer diagnosis (Photo courtesy of the National Institutes of Health Clinical Center).
Prostate cancer can vary widely in severity and its potential to spread. Low-grade prostate cancer is associated with a very low risk of cancer-specific death and often does not require treatment, whereas high-grade cancers are much more likely to spread and are responsible for most prostate cancer deaths. This makes the correct assessment of the cancer grade very important for treatment decisions.

Unlike biopsies for most other types of cancer, which target abnormalities found by imaging, systematic biopsy uses a non-targeted method of taking systematically spaced samples across the prostate gland to find a cancer. Because this method can potentially miss areas of cancer, doctors may then over treat a patient with low-grade disease, fearing there is high-grade disease they missed.

A team of medical scientists collaborating with the National Institutes of Health Clinical Center (Bethesda MD, USA) studied 2,103 men who had magnetic resonance imaging (MRI)-visible lesions underwent both MRI-targeted and systematic biopsies. Of these men, 1,312 were diagnosed with cancer and 404 underwent prostatectomy, a full removal of the prostate. By comparing diagnoses from systematic biopsy alone to systematic biopsy plus MRI-targeted biopsy, the team found that adding MRI-targeted biopsy to systematic biopsy led to 208 more cancer diagnoses than systematic biopsy alone. The addition of MRI-targeted biopsy also led to 458 upgrades, or changes in diagnosis to a more aggressive cancer, based on analysis of the biopsy tissue by histopathology.

The team also determined that combined biopsy provided more accurate diagnosis than MRI-targeted biopsies alone. Among the men who underwent prostatectomy, they found that systematic biopsy alone underdiagnosed about 40% and MRI-targeted biopsy alone underdiagnosed about 30% of the cancers, while combined biopsy underdiagnosed 14.4% of the cancers. In addition, while systematic biopsy underdiagnosed 16.8% and MRI-targeted biopsy underdiagnosed 8.7% of the most aggressive cancers, combined biopsy missed only 3.5% of the most aggressive cancers.

Peter Pinto, MD, of the Urologic Oncology Branch in NCI's Center for Cancer Research and senior author of the study, said, “With the addition of MRI-targeted biopsy to systematic biopsy, we can now identify the most lethal cancers within the prostate earlier, providing patients the potential for better treatment before the cancers spread.”

The authors concluded that among patients with MRI-visible lesions, combined biopsy led to more detection of all prostate cancers. However, MRI-targeted biopsy alone underestimated the histologic grade of some tumors. After radical prostatectomy, upgrades to grade group 3 or higher on histopathological analysis were substantially lower after combined biopsy. The study was published on March 5, 2020 in the journal The New England Journal of Medicine.

Related Links:
National Institutes of Health Clinical Center

Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more