Crohn's Disease-Associated Bacteria Tolerate Antibiotics
By LabMedica International staff writers Posted on 26 Nov 2019 |

Image: Axio Vert.A1 inverted microscope (Photo courtesy of Carl Zeiss)
Crohn's disease is a chronic disease that causes inflammation and irritation in the digestive tract. The disease is characterized by an imbalance in the intestinal microbiome. In particular, adherent-invasive Escherichia coli (AIEC) strains have been implicated in the disease.
The diversity of virulence factors displayed by multiple AIEC strains suggests that members of this pathovar have evolved different strategies to colonize their hosts. AIEC ability to persist, and in some cases replicate within macrophages is particularly intriguing. A reference strain for this pathovar, AIEC LF82, forms micro-colonies within phagolysosomes, an environment that prevents commensal E. coli multiplication.
Microbiologists at the Université Paris Sciences et Lettres (Paris, France) and their associates used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular AIEC LF82. The investigators infected cells resulting in the observation of three LF82 bacteria per macrophage on average at 1 hour. Imaging was performed on an inverted Zeiss Axio Imager (Jena, Germany) with a spinning disk CSU W1 (Yokogawa, Tokyo, Japan).
The team also performed antibiotic challenge and viable bacterial count using the gentamycin protection assay, fluorescence quantification, live and dead assays using the Live and Dead BacLight Viability kit (Thermo Fisher Scientific, Waltham, MA, USA), measurement of gene expression by RT-qPCR using a MyiQ real-time qPCR machine (Bio-Rad, Hercules, CA, USA).
The scientists reported that they found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. Importantly, non-growers resist treatment with various antibiotics.
The authors concluded that intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. The study was published on November 14, 2019 in the journal PLOS Pathogens.
Related Links:
Université Paris Sciences et Lettres
Carl Zeiss
Yokogawa
Thermo Fisher Scientific
Bio-Rad
The diversity of virulence factors displayed by multiple AIEC strains suggests that members of this pathovar have evolved different strategies to colonize their hosts. AIEC ability to persist, and in some cases replicate within macrophages is particularly intriguing. A reference strain for this pathovar, AIEC LF82, forms micro-colonies within phagolysosomes, an environment that prevents commensal E. coli multiplication.
Microbiologists at the Université Paris Sciences et Lettres (Paris, France) and their associates used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular AIEC LF82. The investigators infected cells resulting in the observation of three LF82 bacteria per macrophage on average at 1 hour. Imaging was performed on an inverted Zeiss Axio Imager (Jena, Germany) with a spinning disk CSU W1 (Yokogawa, Tokyo, Japan).
The team also performed antibiotic challenge and viable bacterial count using the gentamycin protection assay, fluorescence quantification, live and dead assays using the Live and Dead BacLight Viability kit (Thermo Fisher Scientific, Waltham, MA, USA), measurement of gene expression by RT-qPCR using a MyiQ real-time qPCR machine (Bio-Rad, Hercules, CA, USA).
The scientists reported that they found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. Importantly, non-growers resist treatment with various antibiotics.
The authors concluded that intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections. The study was published on November 14, 2019 in the journal PLOS Pathogens.
Related Links:
Université Paris Sciences et Lettres
Carl Zeiss
Yokogawa
Thermo Fisher Scientific
Bio-Rad
Latest Pathology News
- AI Performs Virtual Tissue Staining at Super-Resolution
- AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
- Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
- Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
- Saliva-Based Testing to Enable Early Detection of Cancer, Heart Disease or Parkinson’s
- Advances in Monkeypox Virus Diagnostics to Improve Management of Future Outbreaks
- Nanoneedle-Studded Patch Could Eliminate Painful and Invasive Biopsies
- AI Cancer Classification Tool to Drive Targeted Treatments
- AI-Powered Imaging Enables Faster Lung Disease Treatment
- New Laboratory Method Speeds Diagnosis of Rare Genetic Disease
- New Technology Autonomously Detects AI Hallucinations in Digital Pathology
- Novel Algorithm Rapidly Identifies Cell Types to Improve Cancer Diagnosis
- AI Method Speeds Up Cancer Tracking Using Blood Tests
- New AI Tool Improves Blood Cancer Diagnosis
- Novel Platform Technology Predicts Diseases by Early Detection of Aging Signals in Liver Tissue
- AI Model Detects More Than 170 Cancer Types
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
RNA-Seq Based Diagnostic Test Enhances Diagnostic Accuracy of Pediatric Leukemia
A new unique test is set to reshape the way Acute Lymphoblastic Leukemia (BCP-ALL) samples can be analyzed. Qlucore (Lund, Sweden) has launched the first CE-marked RNA-seq based diagnostic test for pediatric... Read more
New Technique for Measuring Acidic Glycan in Blood Simplifies Schizophrenia Diagnosis
Polysialic acid is a unique acidic glycan predominantly found in brain regions associated with memory and emotion, but it is also present in the bloodstream. Research has shown that blood levels of polysialic... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Blood Test Detects Organ Rejection in Heart Transplant Patients
Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more
Liquid Biopsy Approach to Transform Diagnosis, Monitoring and Treatment of Lung Cancer
Lung cancer continues to be a major contributor to cancer-related deaths globally, with its biological complexity and diverse regulatory processes making diagnosis and treatment particularly difficult.... Read more
Computational Tool Exposes Hidden Cancer DNA Changes Influencing Treatment Resistance
Structural changes in tumor DNA are among the most damaging genetic alterations in cancer, yet they often go undetected, particularly when tissue samples are degraded or of low quality. These hidden genomic... Read morePathology
view channel
AI Performs Virtual Tissue Staining at Super-Resolution
Conventional histopathology, essential for diagnosing various diseases, typically involves chemically staining tissue samples to reveal cellular structures under a microscope. This process, known as “histochemical... Read more
AI-Driven Preliminary Testing for Pancreatic Cancer Enhances Prognosis
Pancreatic cancer poses a major global health threat due to its high mortality rate, with 467,409 deaths and 510,992 new cases reported worldwide in 2022. Often referred to as the "king" of all cancers,... Read more
Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response
Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Clinical AI Solution for Automatic Breast Cancer Grading Improves Diagnostic Accuracy
Labs that use traditional image analysis methods often suffer from bottlenecks and delays. By digitizing their pathology practices, labs can streamline their work, allowing them to take on larger caseloads... Read moreTechnology
view channel
Inexpensive DNA Coated Electrode Paves Way for Disposable Diagnostics
Many people around the world still lack access to affordable, easy-to-use diagnostics for diseases like cancer, HIV, and influenza. Conventional sensors, while accurate, often rely on expensive equipment... Read more
New Miniature Device to Transform Testing of Blood Cancer Treatments
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for blood cancers like leukemia, offering hope to patients when other treatments fail. However, despite its promise,... Read moreIndustry
view channel
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more