LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

C. Difficile Bacteria Adapted to Spread in Hospitals

By LabMedica International staff writers
Posted on 29 Aug 2019
Image: The gut-infecting bacterium Clostridium difficile shown growing in a petri dish, and is evolving into two separate species with one group highly adapted to spread in hospitals (Photo courtesy of Anne Koerber/LSHTM).
Image: The gut-infecting bacterium Clostridium difficile shown growing in a petri dish, and is evolving into two separate species with one group highly adapted to spread in hospitals (Photo courtesy of Anne Koerber/LSHTM).
Clostridioides difficile, also known as Clostridium difficile, bacteria can infect the gut and are the leading cause of antibiotic-associated diarrhea worldwide. While someone is healthy and not taking antibiotics, millions of 'good' bacteria in the gut keep the C. difficile under control.

However, antibiotics wipe out the normal gut bacteria, leaving the patient vulnerable to C. difficile infection in the gut. This is then difficult to treat and can cause bowel inflammation and severe diarrhea. Often found in hospital environments, C. difficile forms resistant spores that allow it to remain on surfaces and spread easily between people, making it a significant burden on the healthcare system.

Scientists at the Wellcome Trust Sanger Institute (Hinxton, UK) and their colleagues collected and cultured 906 strains of C. difficile isolated from humans, animals, such as dogs, pigs and horses, and the environment. By sequencing the DNA of each strain, and comparing and analyzing all the genomes, they discovered that C. difficile is currently evolving into two separate species.

The team found that found that this emerging species, named C. difficile clade A, made up approximately 70% of the samples from hospital patients. It had changes in genes that metabolize simple sugars, so they then studied C. difficile in mice, and found that the newly emerging strains colonized mice better when their diet was enriched with sugar. It had also evolved differences in the genes involved in forming spores, giving much greater resistance to common hospital disinfectants. These changes allow it to spread more easily in healthcare environments.

Trevor Lawley, PhD, a molecular microbiologist and senior author of the study, said, “Our study provides genome and laboratory based evidence that human lifestyles can drive bacteria to form new species so they can spread more effectively. We show that strains of C. difficile bacteria have continued to evolve in response to modern diets and healthcare systems and reveal that focusing on diet and looking for new disinfectants could help in the fight against these bacteria.” The study was published on August 12, 2019, in the journal Nature Genetics.

Related Links:
Wellcome Trust Sanger Institute

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more