Rare Inherited Enzyme Disorder Yields Insight into Fibrosis
By LabMedica International staff writers Posted on 31 Jul 2019 |

Image: The LSRFortessa flow cytometer instrument (Photo courtesy of BD Biosciences).
Mammalian tissues and organs preserve their structural and functional homeostasis by means of their supportive connective tissue, a three-dimensional network of cells and extracellular matrix (ECM) with different topological characteristics depending on the organ/tissue in which it is embedded.
An association has been discovered between a deficiency in the enzyme neuraminidase 1 (NEU1) and the build-up of connective tissue (fibrosis) in organs such as the muscle, kidney, liver, heart and lungs. Fibrosis includes life-threatening conditions such as idiopathic pulmonary fibrosis.
An international team of scientists working with the St. Jude Children’s Research Hospital (Memphis, TN, USA) addressed the potential involvement of NEU1 in human fibrosis, they first determined by Masson’s trichrome staining that the fibrotic disease seen in the muscle was a general phenotype of the Neu1−/− connective tissue in different organs. They checked tissue from 89 adults with idiopathic pulmonary fibrosis (IPF) and found NEU1 production was significantly down-regulated as compared to adults without the diagnosis.
Initially the team used a mouse model before confirming their results in human cells. Human lung fibroblasts from control individuals and patients with IPF were obtained and cultured. Fluorescence-activated cell sorting analyses of skeletal muscle connective tissue cells were performed using markers specific on an LSRFortessa flow cytometer instrument. Proliferation assays were performed and every 24 hours for 1 to 4 days and the optical density was read at 490 nm (OD490) with a FLUOstar Omega plate reader. Other methods used in the study included real-time quantitative polymerase chain reaction, immunohistochemistry, exosome isolation, sucrose gradient, proteomics, and size distribution.
The team found that mouse fibroblasts lacking NEU 1 release excessive numbers of molecules that degrade the extracellular matrix, as well as exosomes. The exosomes are loaded with factors that promote fibrosis, including the growth factor TGF-β and the signaling molecule WNT. Normal mouse and human fibroblasts cells were activated to proliferate and migrate when exposed to exosomes containing TGF-β, WNT and related molecules released by NEU1-deficient fibroblasts. The investigators checked an RNA sequencing database of 89 idiopathic pulmonary fibrosis patients and found NEU1 was among the most down-regulated of 66 genes included in the database.
Alessandra d'Azzo, PhD, the senior author of study said, “This is the first time NEU1 has been associated with fibrotic conditions. NEU1 is an important enzyme that breaks down sugar-containing molecules in many cells of the body, but it has not really been on the radar for adult health problems.” The authors concluded that their findings reveal an unexpected exosome-mediated signaling pathway downstream of NEU1 deficiency that propagates a fibrotic disease and could be implicated in idiopathic forms of fibrosis in humans. The study was published on July 17, 2019, in the journal Science Advances.
Related Links:
St. Jude Children’s Research Hospital
An association has been discovered between a deficiency in the enzyme neuraminidase 1 (NEU1) and the build-up of connective tissue (fibrosis) in organs such as the muscle, kidney, liver, heart and lungs. Fibrosis includes life-threatening conditions such as idiopathic pulmonary fibrosis.
An international team of scientists working with the St. Jude Children’s Research Hospital (Memphis, TN, USA) addressed the potential involvement of NEU1 in human fibrosis, they first determined by Masson’s trichrome staining that the fibrotic disease seen in the muscle was a general phenotype of the Neu1−/− connective tissue in different organs. They checked tissue from 89 adults with idiopathic pulmonary fibrosis (IPF) and found NEU1 production was significantly down-regulated as compared to adults without the diagnosis.
Initially the team used a mouse model before confirming their results in human cells. Human lung fibroblasts from control individuals and patients with IPF were obtained and cultured. Fluorescence-activated cell sorting analyses of skeletal muscle connective tissue cells were performed using markers specific on an LSRFortessa flow cytometer instrument. Proliferation assays were performed and every 24 hours for 1 to 4 days and the optical density was read at 490 nm (OD490) with a FLUOstar Omega plate reader. Other methods used in the study included real-time quantitative polymerase chain reaction, immunohistochemistry, exosome isolation, sucrose gradient, proteomics, and size distribution.
The team found that mouse fibroblasts lacking NEU 1 release excessive numbers of molecules that degrade the extracellular matrix, as well as exosomes. The exosomes are loaded with factors that promote fibrosis, including the growth factor TGF-β and the signaling molecule WNT. Normal mouse and human fibroblasts cells were activated to proliferate and migrate when exposed to exosomes containing TGF-β, WNT and related molecules released by NEU1-deficient fibroblasts. The investigators checked an RNA sequencing database of 89 idiopathic pulmonary fibrosis patients and found NEU1 was among the most down-regulated of 66 genes included in the database.
Alessandra d'Azzo, PhD, the senior author of study said, “This is the first time NEU1 has been associated with fibrotic conditions. NEU1 is an important enzyme that breaks down sugar-containing molecules in many cells of the body, but it has not really been on the radar for adult health problems.” The authors concluded that their findings reveal an unexpected exosome-mediated signaling pathway downstream of NEU1 deficiency that propagates a fibrotic disease and could be implicated in idiopathic forms of fibrosis in humans. The study was published on July 17, 2019, in the journal Science Advances.
Related Links:
St. Jude Children’s Research Hospital
Latest Pathology News
- Groundbreaking Chest Pain Triage Algorithm to Transform Cardiac Care
- AI-Based Liquid Biopsy Approach to Revolutionize Brain Cancer Detection
- AI-Driven Analysis of Digital Pathology Images to Improve Pediatric Sarcoma Subtyping
- AI-Based Model Predicts Kidney Cancer Therapy Response
- Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
- World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
- Breakthrough Diagnostic Approach to Significantly Improve TB Detection
- Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Channels
Clinical Chemistry
view channel
AI-Powered Blood Test Accurately Detects Ovarian Cancer
Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more
Automated Decentralized cfDNA NGS Assay Identifies Alterations in Advanced Solid Tumors
Current circulating cell-free DNA (cfDNA) assays are typically centralized, requiring specialized handling and transportation of samples. Introducing a flexible, decentralized sequencing system at the... Read moreMass Spectrometry Detects Bacteria Without Time-Consuming Isolation and Multiplication
Speed and accuracy are essential when diagnosing diseases. Traditionally, diagnosing bacterial infections involves the labor-intensive process of isolating pathogens and cultivating bacterial cultures,... Read more
First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes
In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read moreMolecular Diagnostics
view channel
POC Diagnostic Platform Combines Immunoassay and Molecular Testing
An innovative diagnostic platform offers superior sensitivity across all sample types, including blood, compared to existing rapid tests, while maintaining a low-cost, user-friendly design.... Read more
Single Blood Test Could Detect Different Types of Cancer at Early Stages
Currently, reliable screening for only a few types of cancer is available, such as those affecting the breast, bowel, cervix (neck of the womb), and lung for individuals at high risk. While these screenings... Read moreHematology
view channel
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read more
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Blood Test Detects Up to Five Infectious Diseases at POC
Researchers have developed a prototype flow-through assay capable of detecting up to five different infections, with results that can be quickly analyzed and transmitted via a specialized smartphone app.... Read more
Molecular Stool Test Shows Potential for Diagnosing TB in Adults with HIV
Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, led to 1.25 million deaths in 2023, with 13% of those occurring in people living with HIV. The current primary diagnostic method for... Read moreTechnology
view channel
Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer
Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses
Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read moreIndustry
view channel
Qiagen Acquires NGS Analysis Software Company Genoox
QIAGEN (Venlo, the Netherlands) has signed a definitive agreement to acquire Genoox (Tel Aviv, Israel), a provider of artificial intelligence (AI)-powered software that enables clinical labs to scale and... Read more
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more