Bacteriophage-Based Blood Test Rapidly Detects TB Bacteria
By LabMedica International staff writers Posted on 15 Jul 2019 |

Image: A researcher preparing blood samples for Actiphage testing (Photo courtesy of the University of Nottingham, School of Bioscience).
A blood test based on bacteriophage that infect living Mycobacterium tuberculosis (Mtb) bacteria has been shown to diagnose human tuberculosis (TB) and may be able to predict which patients with latent tuberculosis will progress to the active form of the disease.
It is difficult to diagnosis tuberculosis through traditional culture of the slow growing Mtb. Molecular tests to detect Mtb DNA are of limited value due to the organisms’ cell wall, which complicates DNA extraction. The new PBD Biotech (Suffolk, United Kingdom) Actiphage test uses a specific bacteriophage that infects live Mtb and ruptures the cells to release DNA. The DNA is then analyzed by PCR. The whole testing process can be completed in as little six hours.
Investigators at Leicester Biomedical Research Centre (United Kingdom) and the University of Nottingham (United Kingdom) used the Actiphage test to study 66 subjects who were separated into four groups: those with active pulmonary TB, those with latent TB, a control group of patients referred for suspected TB but found not to have the disease, and a control group of healthy individuals. The subjects were tested for Mtb twice, 12 months apart.
Results of Actiphage testing revealed positive findings for 73% of subjects who were subsequently diagnosed with TB. None of the participants in the control groups tested positive with Actiphage, and none of the patients with latent TB who tested negative with Actiphage went on to develop active TB.
The finding that two of the three subjects with latent TB infection who tested positive with Actiphage went on to develop the active form of the disease more than six months later, suggested that the test may have a predictive role in identifying people with the infection at risk of developing the disease.
“TB is the leading cause of death from an infectious disease. It most commonly affects the lungs and from this site is transmitted to others by coughing and sneezing. As there is a lack of diagnostic tools for people unable to bring up sputum, diagnosis is delayed, increasing the likelihood that the disease is spread,” said senior author Dr. Pranabashis Haldar, clinical senior lecturer at the University of Leicester. “Our observations provide new insights into how human TB develops and support recent evidence of the existence of a transitional state of TB infection called incipient TB that does not produce symptoms but carries a high risk of progressing to active TB. There is potential for Actiphage to be developed, both as a mainstream blood test to diagnose TB and as a test used in screening programs to help us identify and treat people with latent infection.”
The study was published in the June 22, 2019, online edition of the journal Clinical Infectious Diseases.
Related Links:
PBD Biotech
Leicester Biomedical Research Centre
University of Nottingham
It is difficult to diagnosis tuberculosis through traditional culture of the slow growing Mtb. Molecular tests to detect Mtb DNA are of limited value due to the organisms’ cell wall, which complicates DNA extraction. The new PBD Biotech (Suffolk, United Kingdom) Actiphage test uses a specific bacteriophage that infects live Mtb and ruptures the cells to release DNA. The DNA is then analyzed by PCR. The whole testing process can be completed in as little six hours.
Investigators at Leicester Biomedical Research Centre (United Kingdom) and the University of Nottingham (United Kingdom) used the Actiphage test to study 66 subjects who were separated into four groups: those with active pulmonary TB, those with latent TB, a control group of patients referred for suspected TB but found not to have the disease, and a control group of healthy individuals. The subjects were tested for Mtb twice, 12 months apart.
Results of Actiphage testing revealed positive findings for 73% of subjects who were subsequently diagnosed with TB. None of the participants in the control groups tested positive with Actiphage, and none of the patients with latent TB who tested negative with Actiphage went on to develop active TB.
The finding that two of the three subjects with latent TB infection who tested positive with Actiphage went on to develop the active form of the disease more than six months later, suggested that the test may have a predictive role in identifying people with the infection at risk of developing the disease.
“TB is the leading cause of death from an infectious disease. It most commonly affects the lungs and from this site is transmitted to others by coughing and sneezing. As there is a lack of diagnostic tools for people unable to bring up sputum, diagnosis is delayed, increasing the likelihood that the disease is spread,” said senior author Dr. Pranabashis Haldar, clinical senior lecturer at the University of Leicester. “Our observations provide new insights into how human TB develops and support recent evidence of the existence of a transitional state of TB infection called incipient TB that does not produce symptoms but carries a high risk of progressing to active TB. There is potential for Actiphage to be developed, both as a mainstream blood test to diagnose TB and as a test used in screening programs to help us identify and treat people with latent infection.”
The study was published in the June 22, 2019, online edition of the journal Clinical Infectious Diseases.
Related Links:
PBD Biotech
Leicester Biomedical Research Centre
University of Nottingham
Latest Microbiology News
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
- Culture-Free Platform Rapidly Identifies Blood Stream Infections
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read more
Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
HIV diagnostic methods have traditionally relied on detecting HIV-specific antibodies, which typically appear weeks after infection. This delayed detection has hindered early diagnosis, complicating patient... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read more
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more