Dormant Disseminated Tumor Cells Stratified in Breast Cancer Patients
By LabMedica International staff writers Posted on 30 Oct 2018 |

Image: Disseminated tumor cells (DTCs) stained by double immunofluorescence (AE1AE3/NR2F1 and AE1AE3/Ki67) and correlation between Ki67 and NR2F1 expression (Photo courtesy of the Icahn School of Medicine at Mount Sinai).
Breast cancer patients may experience relapse and subsequent death from the disease many years after primary treatment. This indicates an ability of occult cancer cells to survive in a non- or slow-proliferating state, retaining a potential for progression and proliferation at a later time point.
The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking.
Scientists at the University Hospital Oslo (Oslo, Norway) and their colleagues at the Tisch Cancer Institute (New York, NY, USA) analyzed the Nuclear Receptor Subfamily 2 Group F Member 1 (NR2F1) protein expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. NR2F1 is an orphan nuclear receptor of the retinoic acid receptor family.
Bone marrow was aspirated in heparin and separated by density centrifugation using Lymphoprep. Mononuclear cells (MNCs) were collected from the interphase layer, washed in 1% fetal calf serum in PBS and resuspended to 1 × 106 cells/mL. Cytospins were prepared by centrifugation of the BM MNCs down to poly-l-lysine-coated glass slides (5 × 105 MNCs/slide) in a cytocentrifuge, air-dried at room temperature overnight, and stored at −80 °C until immunostaining. Double immunofluorescence was performed using the broad-specter anticytokeratin (anti-CK) monoclonal antibodies AE1/AE3 combined with anti-COUP TF1/NR2F1 for expression of dormancy.
The team found that when cells from a breast cancer patient's original tumor metastasized into the patient's bone marrow with none, or only a small amount, of the protein NR2F1, the patients all soon died. However, patients who had a high concentration of NR2F1 in the cancer cells in their bone marrow did not frequently develop this type of metastatic cancer, and lived longer. The presence of a high concentration of NR2F1 induced dormancy in the cancer cells, essentially deactivating them, so this study shows that survival in these patients is due to the dormancy of the disseminated cancer.
Julio A. Aguirre-Ghiso, PhD, professor of Oncological Sciences and the lead author of the study, said, “This research shows that the survival advantage in these patients is due to high levels of this protein. Tests using this protein marker could further improve curative treatment of breast cancer, sparing patients from unnecessary treatments. Identifying patients with disseminated disease that is not yet symptomatic and characterizing it for potential dormancy or metastatic recurrence is a game changer.” The study was published on October 16, 2018, in the journal Breast Cancer Research.
Related Links:
University Hospital Oslo
Tisch Cancer Institute
The presence of disseminated tumor cells (DTCs) in bone marrow (BM) is an independent prognostic factor in early breast cancer but does not uniformly predict outcome. Tumor cells can persist in a quiescent state over time, but clinical studies of markers predicting the awakening potential of DTCs are lacking.
Scientists at the University Hospital Oslo (Oslo, Norway) and their colleagues at the Tisch Cancer Institute (New York, NY, USA) analyzed the Nuclear Receptor Subfamily 2 Group F Member 1 (NR2F1) protein expression in DTCs by double immunofluorescence (DIF) staining of extra cytospins prepared from 114 BM samples from 86 selected DTC-positive breast cancer patients. NR2F1 is an orphan nuclear receptor of the retinoic acid receptor family.
Bone marrow was aspirated in heparin and separated by density centrifugation using Lymphoprep. Mononuclear cells (MNCs) were collected from the interphase layer, washed in 1% fetal calf serum in PBS and resuspended to 1 × 106 cells/mL. Cytospins were prepared by centrifugation of the BM MNCs down to poly-l-lysine-coated glass slides (5 × 105 MNCs/slide) in a cytocentrifuge, air-dried at room temperature overnight, and stored at −80 °C until immunostaining. Double immunofluorescence was performed using the broad-specter anticytokeratin (anti-CK) monoclonal antibodies AE1/AE3 combined with anti-COUP TF1/NR2F1 for expression of dormancy.
The team found that when cells from a breast cancer patient's original tumor metastasized into the patient's bone marrow with none, or only a small amount, of the protein NR2F1, the patients all soon died. However, patients who had a high concentration of NR2F1 in the cancer cells in their bone marrow did not frequently develop this type of metastatic cancer, and lived longer. The presence of a high concentration of NR2F1 induced dormancy in the cancer cells, essentially deactivating them, so this study shows that survival in these patients is due to the dormancy of the disseminated cancer.
Julio A. Aguirre-Ghiso, PhD, professor of Oncological Sciences and the lead author of the study, said, “This research shows that the survival advantage in these patients is due to high levels of this protein. Tests using this protein marker could further improve curative treatment of breast cancer, sparing patients from unnecessary treatments. Identifying patients with disseminated disease that is not yet symptomatic and characterizing it for potential dormancy or metastatic recurrence is a game changer.” The study was published on October 16, 2018, in the journal Breast Cancer Research.
Related Links:
University Hospital Oslo
Tisch Cancer Institute
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more