LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Multiplex Testing Speeds Up CNS Infection Diagnosis

By LabMedica International staff writers
Posted on 16 Aug 2018
Image: The FilmArray System is the new standard for syndromic infectious disease diagnostics (Photo courtesy of BioFire Diagnostics).
Image: The FilmArray System is the new standard for syndromic infectious disease diagnostics (Photo courtesy of BioFire Diagnostics).
A variety of viral, bacterial, and fungal pathogens cause infections of the central nervous system (CNS), which range in severity from mild and self-limiting to severe and life-threatening. Initial symptoms like headache, fever, photophobia, and neck stiffness are not organism-specific so cannot be used to guide therapy.

Current microbiologic methods identify a specific organism in only 30%-50% of patients with presumed CNS infections, largely due to poor culture sensitivity stemming from the low concentration of organism in cerebrospinal fluid (CSF) and low volume of CSF collected for microbiologic analysis.

An assistant professor of pathology at the Medical College of Wisconsin (Milwaukee, WI, USA) has suggested that a multiplex testing approach simplifies ordering for clinicians and provides a relatively comprehensive result in as little as 60 minutes. Using multiplexed tests to analyze CSF resulted in a 44% to 600% increase in specimens with an identified organism, mostly due to nucleic acid amplification tests (NAATs’) increased sensitivity compared to culture.

While potentially beneficial, the significance of detecting these additional organisms needs to be considered in the context of other laboratory values and a patient’s clinical status. The FilmArray ME panel identified Streptococcus pneumoniae in an additional 12 CSF specimens when compared to culture; however, seven of these patients had no clinical or laboratory evidence of S. pneumoniae suggesting a false positive result potentially due to external contamination of the specimens.

Consequently, despite having a specificity of more than 99% for S. pneumoniae the test’s positive predictive value was just 60%. Similarly, a definitive diagnosis of CNS infection was made in only 11% of human herpesvirus-6 and 33% of CMV-positive specimens, possibly due to latent virus present within leukocytes in CSF rather than an indication of active disease. Combined, these data underscore the need to correlate FA-ME results with other laboratory values and host factors to validate a result, especially in cases with results unexpected or inconsistent with a patient’s risk factors and clinical course.

The FA-ME test identifies 14 microorganisms frequently associated with community acquired CNS infections. However, other patient populations including those with traumatic injury or surgery involving the CNS are susceptible to pathogens that are not part of the FA-ME panel. In these patients, FA-ME lacks broad utility, and a negative FA-ME result could be misleading. Blake W. Buchan, PhD, D(ABMM), the author of the study concluded that for these reasons, laboratories need to develop criteria to optimize the benefit from FA-ME testing including selecting appropriate patient populations and rejecting specimens. The study was published on August 1, 2018, in the journal Clinical Laboratory News.

Related Links:
Medical College of Wisconsin

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Hematology System
Medonic M16C

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more