We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Nano-Imaging Reveals Links to Regulation of Bone Mineralization

By LabMedica International staff writers
Posted on 16 Apr 2018
Print article
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
Image: Calcium phosphate mineralization occurs in both extra- and intrafibrillar spaces of collagen (left and right images, respectively). The confined collagen structure contributes to reducing the thermodynamic energy barrier to intrafibrillar nucleation for bone mineralization (Photo courtesy of Washington University).
A team of bioengineers applied a hi-tech nano-imagining technique to determine the mechanisms involved in the initialization and regulation of the process of bone mineralization.

Mineralization of collagen is critical for the mechanical functions of bones and teeth. Calcium phosphate nucleation in collagenous structures follows distinctly different patterns in highly confined gap regions (nanoscale confinement) than in less confined extrafibrillar spaces (microscale confinement). Although the mechanism(s) driving these differences are still largely unknown, differences in the free energy for nucleation may explain these two mineralization behaviors.

To develop a better understanding of the mechanisms underlying bone mineralization, investigators at Washington University (St. Louis, Mo, USA) turned to the Advanced Photon Source at the Argonne National Laboratory (Lemont, IL, USA). They used this tool to apply the technique of in situ small-angle X-ray (SAXS) scattering in order to study calcium phosphate nucleation in the collagen gap (a space about two nanometers high by 40 nanometers wide).

They investigators described in the March 6, 2018, online edition of the journal Nature Communications the results they had obtained using in situ X-ray scattering observations and classical nucleation theory. They reported obtaining nucleation energy barriers to intra- and extrafibrillar mineralization (IM and EM). Polyaspartic acid, an extrafibrillar nucleation inhibitor, increased interfacial energies between nuclei and mineralization fluids. In contrast, the confined gap spaces inside collagen fibrils lowered the energy barrier by reducing the reactive surface area of nuclei, decreasing the surface energy penalty. The confined gap geometry, therefore, guided the two-dimensional morphology and structure of bioapatite and changed the nucleation pathway by reducing the total energy barrier.

“When we understand how new bone forms, we can modulate where it should form,” said senior author Dr. Young-Shin Jun, professor of energy and environmental and chemical engineering at Washington University. “Previously, we thought that collagen fibrils could serve as passive templates, however, this study confirmed that collagen fibrils play an active role in biomineralization by controlling nucleation pathways and energy barriers. If we can tweak the chemistry and send signals to form bone minerals faster or stronger, that would be helpful to the medical field.”

“Confined space is a somewhat exotic space that we have not explored much, and we are always thinking about new material formation without any limitation of space,” said Dr. Jun. “However, there are so many confined spaces, such as pores in geomedia in subsurface environments or in water filtration membranes, where calcium carbonate or calcium sulfate form as scale. This paper is a snapshot of one health aspect, but the new knowledge can be applied broadly to energy systems and water systems.”

Related Links:
Washington University
Argonne National Laboratory

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Technology

view channel
Image: Pictorial representation of the working principle of a functionalized Carbon Dots CDs and EB based Func sensor (Photo courtesy of Toppari/University of Jyväskylä)

Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection

Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more

Industry

view channel
Image: BIOTIA-ID is an NGS platform that accurately and sensitively diagnoses infectious disease-causing pathogens (Photo courtesy of Adobe Stock)

New Collaboration to Advance Microbial Identification for Infectious Disease Diagnostics

With the rise of global pandemics, antimicrobial resistance, and emerging pathogens, healthcare systems worldwide are increasingly dependent on advanced diagnostic tools to guide clinical decisions.... Read more
Sekisui Diagnostics UK Ltd.