LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Rapid Test Reports Antibiotic Resistance in Two Hours

By LabMedica International staff writers
Posted on 28 Mar 2018
Image: The Lab-on-a-Chip system used with Raman spectroscopy to identify antibiotic resistance (Photo courtesy of Leibniz-Institute of Photonic Technology).
Image: The Lab-on-a-Chip system used with Raman spectroscopy to identify antibiotic resistance (Photo courtesy of Leibniz-Institute of Photonic Technology).
Resistant bacteria are spreading worldwide, which makes fast antibiotic susceptibility testing and determination of the minimal inhibitory concentration (MIC) urgently necessary to select appropriate antibiotic therapy in time.

The often unnecessary and mass use of antibiotics causes the resistance of pathogens against drugs and infections that were easily curable up to now may become life threatening. A new rapid test will give information on which available antibiotics are still effective and faster diagnostics allows for personalized therapy and saves lives.

Scientists at the Jena University Hospital (Jena, Germany) and their colleagues have developed a simple and fast Raman spectroscopy-based procedure to identify antimicrobial susceptibilities and determine the MIC within only two hours total analysis, marking a huge time savings compared to established phenotypic methods nowadays used in diagnostics.

The sample preparation was fast and easy as well as comparable to currently established tests. The use of a dielectrophoresis chip allows automated collection of the bacteria in a micron-sized region for high-quality Raman measurement directly from bacterial suspensions. The new Raman spectroscopic MIC test was validated with 13 clinical Escherichia coli isolates that show a broad range of ciprofloxacin resistance levels and were collected from patients with blood-stream infection.

Micro-Raman spectroscopy was able to detect ciprofloxacin-induced changes in E. coli after only 90 minutes interaction time. Principal component analysis as well as a simple computed ratio of the Raman marker bands at 1458 and 1485 cm–1 showed a clear concentration-dependent effect. The MIC values determined with the new Raman method are in good agreement with MICs obtained by reference methods such as broth microdilution, Vitek-2 and E-test and can be used to provide a classification as sensitive, intermediate, or resistant.

Ute Neugebauer, PhD, a professor of Physical Chemistry and senior author of the study said, “We combine light-based analytical methods with microfluidic sample processing. With our Lab-on-a-Chip system, thus a miniaturized lab, we are able to clearly identify bacterial strains and their resistances, in less than three hours.” The study was published in the February 2018 issue of the journal Analytical Chemistry.

Related Links:
Jena University Hospital

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more