LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Multiplexed Amplification Evaluated for Viral Hemorrhagic Fever Diagnostics

By LabMedica International staff writers
Posted on 14 Dec 2017
Image: The Mastercycler Nexus thermal cycler (Photo courtesy of Eppendorf).
Image: The Mastercycler Nexus thermal cycler (Photo courtesy of Eppendorf).
Viral hemorrhagic fever is a severe and potentially lethal disease, characterized by fever, malaise, vomiting, mucosal and gastrointestinal bleeding, and hypotension, in which multiple organ systems are affected.

Due to modern transportation and global trade, outbreaks of viral hemorrhagic fevers have the potential to spread rapidly and affect a significant number of susceptible individuals. Therefore, urgent and robust diagnostics with an identification of the causative virus is crucial.

Scientists at the Robert Koch Institute (Berlin, Germany) have developed and evaluated a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics.

The team used an ultrahigh-multiplex panel designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform.

A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. Thermo cycling was performed in an Eppendorf Mastercycler Pro. The amplicons obtained from the virus strains were subjected to the Ion Torrent Personal Genome Machine (PGM) System for NGS analysis.

The investigators used the multiplex primer panel that comprised two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.

The authors concluded that virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs, which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring. The study was published on November 20, 2017, in the journal Public Library of Science Neglected Tropical Diseases.

Related Links:
Robert Koch Institute

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
Gold Member
Hematology Analyzer
Medonic M32B

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more