LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Could Help Identify Early Skin Cancer

By LabMedica International staff writers
Posted on 05 Sep 2017
Image: New AI technology may help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies (Photo courtesy of Deposit Photos).
Image: New AI technology may help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies (Photo courtesy of Deposit Photos).
Newly developed technology uses artificial intelligence (AI) to help detect melanoma skin cancer earlier than current methods and to help reduce the number of unnecessary biopsies. The AI-based method employs machine-learning software to analyze images of skin lesions and to provide doctors with objective data on telltale biomarkers of melanoma.

"This could be a very powerful tool for skin cancer clinical decision support," said Alexander Wong, professor at University of Waterloo (Waterloo, ON, Canada), "The more interpretable information there is, the better the decisions are." Prof. Wong developed the technology in collaboration with Daniel Cho, former PhD student at Waterloo, David Clausi, professor at Waterloo, and Farzad Khalvati, adjunct professor at Waterloo and scientist at Sunnybrook.

Currently, dermatologists largely rely on subjective visual examinations of skin lesions (e.g. moles) to decide if patients should undergo biopsies to diagnose the disease. The new system deciphers levels of biomarker substances in lesions, adding consistent, quantitative information to assessments currently based on visual appearance alone. In particular, changes in the concentration and distribution of eumelanin (gives color to skin) and hemoglobin are strong indicators of melanoma.

"There can be a huge lag-time before doctors even figure out what is going on with the patient," said Prof. Wong, "Our goal is to shorten that process." The AI system was trained using tens of thousands of skin images and their corresponding eumelanin and hemoglobin levels. It gives doctors objective information on lesion characteristics to help them identify or rule out melanoma before deciding if to take more invasive action. The technology could be available to doctors as early as 2018.

The research was recently presented at the 14th International Conference on Image Analysis and Recognition (ICIAR 2017, July 5-7, 2017, Montreal, Canada).

Related Links:
University of Waterloo

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Laboratory Software
ArtelWare

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more