LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Technique Tests Therapies for Cancer Metastasis

By LabMedica International staff writers
Posted on 10 May 2017
Image: Dr. Xiang Zhang implementing the bone-in-culture array, a platform to model early-stage bone metastases and discover the fate of cancer cells (Photo courtesy of Baylor College of Medicine).
Image: Dr. Xiang Zhang implementing the bone-in-culture array, a platform to model early-stage bone metastases and discover the fate of cancer cells (Photo courtesy of Baylor College of Medicine).
A new laboratory technique has been developed that can rapidly test the effectiveness of treatments for life-threatening, breast cancer metastases in bone. Until now, there has not been an effective laboratory platform to study metastatic tumors in their new microenvironment.

In the clinic, primary breast tumors are usually surgically removed soon after diagnosis, leaving patients ‘tumor-free’. However, 20% to 40% of breast cancer survivors will eventually suffer metastasis to distant organs, sometimes years after surgery. To mimic the interactions between metastatic breast cancer cells and bone cells in a living system, a test has been developed, called bone-in culture array, by fragmenting mouse bones that already contain breast cancer cells.

Scientists at the Baylor College of Medicine and their colleagues determined that the bone-in culture maintains the micro-environmental characteristics of bone metastasis in living animal models, and the cancer cells maintain the gene expression profile, the growth pattern and their response to therapies. Using the bone-in model, the investigators determined that the drug danusertib preferentially inhibits bone metastasis. They also found that other drugs stimulate the growth of slow-growing cancer cells in the bone. In addition to determining the effect of drugs in the growth of metastasis in bone, the bone-in culture can be used to investigate mechanisms involved in bone colonization by cancer cells.

In the future, the scientists expect to develop this platform into a standardized system that can be used in the clinic to find specific drugs that can better treat metastatic cancer. Xiang Zhang, PhD, an associate professor of molecular and cellular biology and lead investigator said, “We have created a system in which we can mimic the interactions between cancer cells and bone cells, as bone is the place where breast cancer, and many other cancers too, disseminates most frequently. We have developed a system that allows us to test many different drug responses simultaneously to discover the therapy that can selectively act on metastatic cancer cells and minimize the effect on the bone.” The study was published on April 21, 2017, in the journal Nature Communications.

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Hemodynamic System Monitor
OptoMonitor

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more