LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood Test Shows Cancer Recurrence Months before Scans

By LabMedica International staff writers
Posted on 12 Apr 2017
Image: A histology of a fine needle aspiration of a lung lesion showing a three-dimensional cluster of cells with the nuclear changes of malignancy: variation in nuclear size, staining and shape, and features of squamous differentiation: moderate amount of cytoplasm, small/indistinct nucleoli, nucleus in the cell center, and keratinization (Photo courtesy of Nephron).
Image: A histology of a fine needle aspiration of a lung lesion showing a three-dimensional cluster of cells with the nuclear changes of malignancy: variation in nuclear size, staining and shape, and features of squamous differentiation: moderate amount of cytoplasm, small/indistinct nucleoli, nucleus in the cell center, and keratinization (Photo courtesy of Nephron).
A prospective clinical trial showed that a blood test looking at specific biomarkers was able to detect recurrences of lung cancer an average of six months before conventional imaging methods found evidence of recurrence.

Lung cancer is known for its aggressive nature and ability to spread throughout a patient’s body. Cancer cells that enter the blood stream are known as circulating tumor cells, or CTCs. CTC counts through a simple blood test, allowing for more frequent and less invasive follow-up.

Scientists at the Perelman School of Medicine enrolled 48 patients with stage II-III locally advanced non-small cell lung cancer (NSCLC) were enrolled in the prospective clinical trial. All patients were treated with concurrent chemoradiation. Blood samples were obtained before treatment, during treatment (at weeks 2, 4 and 6) and following treatment (at months 1, 3, 6, 12, 18 and 24).

Patients ranged in age from 31 to 84, with a median age of 66 years. No patient had a history of prior malignancy. The team also assessed patient gender (54% male), race (69% Caucasian, 21% African American), smoking status (77% former, 21% current), histology (48% squamous cell carcinoma, 46% adenocarcinoma) and median primary tumor size was 3.7 cm. Circulating tumor cells were identified by analyzing the samples with an adenoviral probe that detects elevated activity of a specific enzyme that is produced when cancer cells replicate.

The investigators reported that 15/20 patients had elevated CTC counts following treatment, with a median lead time of 4.7 months and a range of 1.2 months to one year. Of these 15 patients, two-thirds demonstrated a rise in CTC counts an average of six months before Positron emission tomography (PET) and/or computerized tomography (CT) scans detected the recurrence. For many patients, CTC levels were negative immediately following treatment but rose subsequently in the months following treatment. While most of these CTC level rises occurred before disease recurrence was identified on imaging, four of the 20 patients experienced recurrences that were detected with imaging before elevated CTC levels indicated the disease had returned.

Charles B. Simone, II, MD, the study’s senior author and principal investigator, said, “The future use of circulating tumor cells as a diagnostic and prognostic tool for localized NSCLC looks promising. Although imaging remains the cornerstone of post-treatment surveillance for patients, blood tests could, and perhaps should, be used in conjunction with imaging scans to better monitor patients during their follow-up period after treatment.” The study was presented on March 16, at the 2017 Multidisciplinary Thoracic Cancers Symposium held in San Francisco, CA, USA.

Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Urine Chemistry Control
Dropper Urine Chemistry Control

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more