CTC Protein Expression Uses Microfluidic Western Blotting
By LabMedica International staff writers Posted on 06 Apr 2017 |

Image: Microfluidic rare-cell workflow for multiplexed western blotting of single patient-derived CTCs (Photo courtesy of University of California – Berkeley).
Circulating tumor cells (CTCs) are rare tumor cells found in the circulatory system of certain cancer patients and the clinical and functional significance of CTCs is still under investigation.
Circulating tumor cells have been isolated from the blood of breast cancer patients and, then microscale physics has been used to design a precision test for protein biomarkers, which are indicators of cancer.
Scientists at the University of California – Berkeley recruited 12 patients with advanced breast cancer and blood was drawn and processed with in five hours after collection. White blood cells were prepared by lysing the red blood cells. Single-cell resolution western blots (scWB) were used to measure a panel of proteins in single CTCs isolated from patients with primary estrogen receptor-positive (ER+) breast cancer.
A commercially available microfluidic tool was used for label-free isolation of circulating cancer cells in both the cell line spiking and cancer patient blood experiments. Flow cytometry analysis was performed and cells were analyzed on a Guava flow cytometer.
The scientists found that the precision handling and analysis revealed a capacity to assay sparingly available patient-derived CTCs, a biophysical CTC phenotype more lysis-resistant than breast cancer cell lines. A capacity to report protein expression was demonstrated on a per CTC basis and two statistically distinct glyceraldehyde 3-phosphate dehydrogenase (GAPDH) subpopulations within the patient-derived CTCs. By sorting and probing the protein targets, the test is more selective than existing pathology tools. Enhanced selectivity will be crucial in detecting subtle chemical modifications to biomarkers that can be important but difficult to measure.
Amy E. Herr, PhD, a professor and senior author of the study said, “Microfluidic design was key in this study. We were able to integrate features needed for each measurement stage into one process. Systems integration allowed us to do every single measurement step very, very quickly while the biomarkers are still concentrated. If not performed exceptionally fast, the cell's proteins diffuse away and become undetectable.” The study was published on March 23, 2017, in the journal Nature Communications.
Circulating tumor cells have been isolated from the blood of breast cancer patients and, then microscale physics has been used to design a precision test for protein biomarkers, which are indicators of cancer.
Scientists at the University of California – Berkeley recruited 12 patients with advanced breast cancer and blood was drawn and processed with in five hours after collection. White blood cells were prepared by lysing the red blood cells. Single-cell resolution western blots (scWB) were used to measure a panel of proteins in single CTCs isolated from patients with primary estrogen receptor-positive (ER+) breast cancer.
A commercially available microfluidic tool was used for label-free isolation of circulating cancer cells in both the cell line spiking and cancer patient blood experiments. Flow cytometry analysis was performed and cells were analyzed on a Guava flow cytometer.
The scientists found that the precision handling and analysis revealed a capacity to assay sparingly available patient-derived CTCs, a biophysical CTC phenotype more lysis-resistant than breast cancer cell lines. A capacity to report protein expression was demonstrated on a per CTC basis and two statistically distinct glyceraldehyde 3-phosphate dehydrogenase (GAPDH) subpopulations within the patient-derived CTCs. By sorting and probing the protein targets, the test is more selective than existing pathology tools. Enhanced selectivity will be crucial in detecting subtle chemical modifications to biomarkers that can be important but difficult to measure.
Amy E. Herr, PhD, a professor and senior author of the study said, “Microfluidic design was key in this study. We were able to integrate features needed for each measurement stage into one process. Systems integration allowed us to do every single measurement step very, very quickly while the biomarkers are still concentrated. If not performed exceptionally fast, the cell's proteins diffuse away and become undetectable.” The study was published on March 23, 2017, in the journal Nature Communications.
Latest Pathology News
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more
First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation,... Read more
Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
Anti-myelin-associated glycoprotein (MAG) antibodies serve as markers for an autoimmune demyelinating disorder that affects the peripheral nervous system, leading to sensory impairment. Anti-MAG-IgM antibodies... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more