We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

CTC Protein Expression Uses Microfluidic Western Blotting

By LabMedica International staff writers
Posted on 06 Apr 2017
Print article
Image: Microfluidic rare-cell workflow for multiplexed western blotting of single patient-derived CTCs (Photo courtesy of University of California – Berkeley).
Image: Microfluidic rare-cell workflow for multiplexed western blotting of single patient-derived CTCs (Photo courtesy of University of California – Berkeley).
Circulating tumor cells (CTCs) are rare tumor cells found in the circulatory system of certain cancer patients and the clinical and functional significance of CTCs is still under investigation.

Circulating tumor cells have been isolated from the blood of breast cancer patients and, then microscale physics has been used to design a precision test for protein biomarkers, which are indicators of cancer.

Scientists at the University of California – Berkeley recruited 12 patients with advanced breast cancer and blood was drawn and processed with in five hours after collection. White blood cells were prepared by lysing the red blood cells. Single-cell resolution western blots (scWB) were used to measure a panel of proteins in single CTCs isolated from patients with primary estrogen receptor-positive (ER+) breast cancer.

A commercially available microfluidic tool was used for label-free isolation of circulating cancer cells in both the cell line spiking and cancer patient blood experiments. Flow cytometry analysis was performed and cells were analyzed on a Guava flow cytometer.

The scientists found that the precision handling and analysis revealed a capacity to assay sparingly available patient-derived CTCs, a biophysical CTC phenotype more lysis-resistant than breast cancer cell lines. A capacity to report protein expression was demonstrated on a per CTC basis and two statistically distinct glyceraldehyde 3-phosphate dehydrogenase (GAPDH) subpopulations within the patient-derived CTCs. By sorting and probing the protein targets, the test is more selective than existing pathology tools. Enhanced selectivity will be crucial in detecting subtle chemical modifications to biomarkers that can be important but difficult to measure.

Amy E. Herr, PhD, a professor and senior author of the study said, “Microfluidic design was key in this study. We were able to integrate features needed for each measurement stage into one process. Systems integration allowed us to do every single measurement step very, very quickly while the biomarkers are still concentrated. If not performed exceptionally fast, the cell's proteins diffuse away and become undetectable.” The study was published on March 23, 2017, in the journal Nature Communications.

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.