We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Samples Reveal Gene Expression Pattern Diagnostic for Lung Cancer

By LabMedica International staff writers
Posted on 08 Mar 2017
Print article
Image: A diagram showing lung cancer’s “field of injury” extends well beyond the tumor. New research demonstrates genetic changes in nasal cells of patients who went on to develop lung cancer (Photo courtesy of Avrum Spira, Boston University Medical Center).
Image: A diagram showing lung cancer’s “field of injury” extends well beyond the tumor. New research demonstrates genetic changes in nasal cells of patients who went on to develop lung cancer (Photo courtesy of Avrum Spira, Boston University Medical Center).
Differences in gene expression that can be detected in nasal tissue from smokers or nonsmokers suggest that it may be possible to diagnose lung cancer from samples collected on nasal swabs.

Investigators at Boston University Medical Center had previously derived and validated a bronchial epithelial gene expression biomarker to detect lung cancer in current and former smokers. Given that gene expression in bronchial and nasal epithelial is similarly altered by cigarette smoke exposure, they sought to determine if cancer-associated gene expression might also be detectable in the more readily accessible nasal epithelium.

Towards this end, the investigators collected nasal epithelial brushings from current and former smokers undergoing diagnostic evaluation for pulmonary lesions suspicious for lung cancer in the Airway Epithelium Gene Expression in the Diagnosis of Lung Cancer (AEGIS) clinical trials. Gene expression was profiled using microarrays.

Results revealed that 535 genes were differentially expressed in the nasal epithelium of AEGIS patients diagnosed with lung cancer versus those with benign disease after one year of follow-up. Using bronchial gene expression data from the AEGIS patients, the investigators found statistically significant concordant cancer-associated gene expression alterations between the two airway sites. Differentially expressed genes in the nose were enriched for genes associated with the regulation of apoptosis and immune system signaling.

A nasal lung cancer classifier that combined clinical factors (age, smoking status, time since quitting, mass size) and nasal gene expression (30 genes) was statistically more significant and sensitive than a clinical-factor only model.

"Our findings clearly demonstrate the existence of a cancer-associated airway field of injury that also can be measured in nasal epithelium," said senior author Dr. Marc Lenburg, professor of medicine at Boston University Medical Center. "We find that nasal gene expression contains information about the presence of cancer that is independent of standard clinical risk factors, suggesting that nasal epithelial gene expression might aid in lung cancer detection. Moreover, the nasal samples can be collected non-invasively with little instrumentation or advanced training."

The study was published in the February 27, 2017, online edition of the Journal of the National Cancer Institute.

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Dermatophytosis Rapid Diagnostic Kit
StrongStep Dermatophytosis Diagnostic Kit
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.