Pathogenic Antibodies to Dengue Virus Linked to Disease Severity
|
By LabMedica International staff writers Posted on 08 Feb 2017 |

Image: People infected more than once with the mosquito-borne dengue virus (blue circles) are at greatest risk for the most severe, potentially fatal, forms of the disease (Photo courtesy of Science).
Researchers have discovered that anti-dengue IgG antibodies enhanced for FcγRIIIA binding are involved in determining severity of disease upon secondary infection. The finding helps explain why only some people develop life-threatening dengue infections.
For most people who contract it for the first time, dengue fever is a relatively mild disease. For some, however, a subsequent infection results in a harsh and potentially fatal illness. Research from a team based at The Rockefeller University has begun to reveal why certain people are much more vulnerable to secondary infections. Their latest findings could lead to better strategies to identify and better treat those most at risk.
“Patients with severe secondary disease have high levels of a particular type of antibody that triggers a forceful immune response. This distinctive signature did not show up in patients with more mild illness,” said senior author Jeffrey V. Ravetch, professor at Rockefeller, “Our work sheds new light on the way in which the dengue virus co-opts antibodies produced as a result of the previous infection, using them to inflict more damage the second time around.”
Researchers have long thought that, when the virus infects a second time, it somehow takes advantage of antibodies that the immune system is still producing as a result of the first infection. But this does not explain why less than 15% of people who catch dengue for the second time develop full-blown hemorrhagic fever or shock.
Previous work in Prof. Ravetch’s lab suggested differences in antibodies might account for why only some people develop severe secondary infections. They showed that the structure of the Fc region of antibodies can influence an immune response by, for example, promoting inflammation versus calming it.
For the current study, first author Taia Wang, then a postdoc in the lab and now assistant professor at Stanford School of Medicine, and her collaborators examined the Fc regions of antibodies in blood collected from patients with mild and severe secondary dengue infections at Siriraj Hospital in Bangkok, Thailand. These people’s immune systems were still producing antibodies as a result of their first dengue virus infection, but the structure of these antibodies varied between individuals.
The researchers found that the dengue patients with more serious disease had high levels of antibodies whose Fc regions lack a particular sugar, a variation known to strongly activate immune cells. Experimentally, they found that activating signals from these antibodies aggravated the disease by leading to the destruction of blood-clotting cells – platelets. So when their platelet levels plummet, patients bleed abnormally—a hallmark of hemorrhagic fever. They found that the lower a patient’s platelet count, the more of these distinctive antibodies he or she tended to have.
“We found that some people’s immune systems respond to dengue infection by producing elevated levels of these pathogenic antibodies, which make them more vulnerable to a severe secondary dengue infection,” said Prof. Wang, “It’s not yet clear if they produce more of these highly activating antibodies even before they encounter the virus.”
The discovery of this antibody signature could help fight the disease in a number of ways. “Because we now know what to look for, it may become possible to identify patients at risk of severe illness, so they can receive intensive, supportive care early on,” said Prof. Ravetch, “It could also aid in the development of safe dengue vaccines that stimulate the immune system without triggering a secondary, potentially harmful response, and of new drugs designed to help patients recover by blocking the antibody signaling.”
Since dengue belongs to the same family of viruses as Zika, the implications go beyond this particular disease. “It will be important to consider the possibility that other, related viruses employ a similar strategy, and that infection with one may affect the subsequent response to another,” said Prof. Ravetch.
The study, by Wang TT et al, was published online January 27, 2017, in the journal Science.
For most people who contract it for the first time, dengue fever is a relatively mild disease. For some, however, a subsequent infection results in a harsh and potentially fatal illness. Research from a team based at The Rockefeller University has begun to reveal why certain people are much more vulnerable to secondary infections. Their latest findings could lead to better strategies to identify and better treat those most at risk.
“Patients with severe secondary disease have high levels of a particular type of antibody that triggers a forceful immune response. This distinctive signature did not show up in patients with more mild illness,” said senior author Jeffrey V. Ravetch, professor at Rockefeller, “Our work sheds new light on the way in which the dengue virus co-opts antibodies produced as a result of the previous infection, using them to inflict more damage the second time around.”
Researchers have long thought that, when the virus infects a second time, it somehow takes advantage of antibodies that the immune system is still producing as a result of the first infection. But this does not explain why less than 15% of people who catch dengue for the second time develop full-blown hemorrhagic fever or shock.
Previous work in Prof. Ravetch’s lab suggested differences in antibodies might account for why only some people develop severe secondary infections. They showed that the structure of the Fc region of antibodies can influence an immune response by, for example, promoting inflammation versus calming it.
For the current study, first author Taia Wang, then a postdoc in the lab and now assistant professor at Stanford School of Medicine, and her collaborators examined the Fc regions of antibodies in blood collected from patients with mild and severe secondary dengue infections at Siriraj Hospital in Bangkok, Thailand. These people’s immune systems were still producing antibodies as a result of their first dengue virus infection, but the structure of these antibodies varied between individuals.
The researchers found that the dengue patients with more serious disease had high levels of antibodies whose Fc regions lack a particular sugar, a variation known to strongly activate immune cells. Experimentally, they found that activating signals from these antibodies aggravated the disease by leading to the destruction of blood-clotting cells – platelets. So when their platelet levels plummet, patients bleed abnormally—a hallmark of hemorrhagic fever. They found that the lower a patient’s platelet count, the more of these distinctive antibodies he or she tended to have.
“We found that some people’s immune systems respond to dengue infection by producing elevated levels of these pathogenic antibodies, which make them more vulnerable to a severe secondary dengue infection,” said Prof. Wang, “It’s not yet clear if they produce more of these highly activating antibodies even before they encounter the virus.”
The discovery of this antibody signature could help fight the disease in a number of ways. “Because we now know what to look for, it may become possible to identify patients at risk of severe illness, so they can receive intensive, supportive care early on,” said Prof. Ravetch, “It could also aid in the development of safe dengue vaccines that stimulate the immune system without triggering a secondary, potentially harmful response, and of new drugs designed to help patients recover by blocking the antibody signaling.”
Since dengue belongs to the same family of viruses as Zika, the implications go beyond this particular disease. “It will be important to consider the possibility that other, related viruses employ a similar strategy, and that infection with one may affect the subsequent response to another,” said Prof. Ravetch.
The study, by Wang TT et al, was published online January 27, 2017, in the journal Science.
Latest Microbiology News
- Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
- AI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
- New Test Measures How Effectively Antibiotics Kill Bacteria
- New Antimicrobial Stewardship Standards for TB Care to Optimize Diagnostics
- New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
- Breakthroughs in Microbial Analysis to Enhance Disease Prediction
- Blood-Based Diagnostic Method Could Identify Pediatric LRTIs
- Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
- Rapid POC Tuberculosis Test Provides Results Within 15 Minutes
- Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
- Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis
- 15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







 Analyzer.jpg)