LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Abnormal Immune Cells Involved in Causing Fibrosis

By LabMedica International staff writers
Posted on 10 Jan 2017
Image: An MRI analysis – Lack of SatM resulted in resistance to fibrosis in mice (Image courtesy of laboratory of Prof. Akira, IFReC, Osaka University).
Image: An MRI analysis – Lack of SatM resulted in resistance to fibrosis in mice (Image courtesy of laboratory of Prof. Akira, IFReC, Osaka University).
Using a mouse model, researchers have discovered a form of atypical monocyte as well as a committed progenitor that are involved in development of fibrosis.

Fibrosis is a form of scarring that, if uncontrolled, can cause deleterious thickening of tissues. Although it is known that an activated immune system can lead to fibrosis, which specific cells are responsible continuous to elude researchers.

Scientists at the WPI Immunology Frontier Research Center (IFReC) of Osaka University (Osaka, Japan) have now identified a subgroup of cells, a class of monocytes with strange morphology, involved in causing fibrosis. "The cells had a bi-lobed segmented nuclear shape and many cytoplasmic granules. We therefore called them 'Segregated nucleus atypical monocytes (SatM)'," said Prof. Shizuo Akira, head of the Host Defense Laboratory at IFReC.

To identify this subgroup, the researchers examined immune cell subpopulations that predominantly appeared in fibrosis and found that "These cells were regulated by C/EBPβ," said Prof. Akira. Detailed examination of immune cells showed that C/EBPβ mutant mice, unlike normal mice, produced no SatM, whereas no other observed immune cell population was changed. The mice were also significantly more resistant to fibrosis. On the other hand, when the mutant mice were exposed to SatM, their susceptibility to fibrosis rose.

Although Prof.Akira, first author Dr. Satoh, and colleagues describe SatM as a subset of monocytes, SatM showed characteristics that suggested they may be hybrids of different immune cells. Gene analysis of SatM "showed granulocyte markers, but SatM are definitely not granulocytes. [This] cell type is one of monocyte," said Prof. Akira.

Additional study found the progenitor cells responsible for producing SatM: adoptive transfer of these progenitors into mutant mice unable to produce SatM resulted in a SatM population, and C/EBPβ was found to be essential for maintaining the progenitors.

The ability to detect cells specifically related to fibrosis gives hope for new, more targeted therapies. "Decades of research have shown that immune cells are extremely diverse," said Prof. Akira, "Clear definitions of the subpopulations are essential for properly diagnosing and treating diseases. Our discovery of SatM should improve therapeutic strategies against fibrosis."

The study, by Satoh T et al, was published online December 21, 2016, in the journal Nature.

Related Links:
Osaka University

Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Pipette
Accumax Smart Series
Gold Member
Immunochromatographic Assay
CRYPTO Cassette

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more