We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Modulation of Redox Environment Increases Breast Cancer Aggressiveness

By Gerald M. Slutzky, PhD
Posted on 16 Nov 2016
Print article
Image: The photomicrograph shows that a less aggressive tumor turns into a more aggressive tumor when artificially made to increase its manganese superoxide dismutase (MnSOD) levels (Photo courtesy of the National University of Singapore).
Image: The photomicrograph shows that a less aggressive tumor turns into a more aggressive tumor when artificially made to increase its manganese superoxide dismutase (MnSOD) levels (Photo courtesy of the National University of Singapore).
Cancer researchers have identified an enzyme that promotes the transition of breast tissue from epithelial (non-cancerous) to mesenchymal (metastatic cancer-like) modes during the development of invasive triple negative breast cancer.

Since analysis of breast cancers in The Cancer Genome Atlas database had revealed strong positive correlation between a tumor's EMT (epithelial - mesenchymal transition) score and the expression of the manganese superoxide dismutase (MnSOD) enzyme, investigators at the National University of Singapore (Singapore) sought to assess the involvement of MnSOD during the switch between epithelial-like and mesenchymal-like phenotypes in breast carcinomas.

As a member of the iron/manganese superoxide dismutase family, this enzyme transforms toxic superoxide, a byproduct of the mitochondrial electron transport chain, into hydrogen peroxide and diatomic oxygen. This function allows SOD2 to clear mitochondrial reactive oxygen species (ROS) and, as a result, confer protection against cell death. As a result, this protein plays an anti-apoptotic and pro-carcinogenic role against oxidative stress, ionizing radiation, and inflammatory cytokines.

The investigators reported in the August 2016 issue of the journal Antioxidants & Redox Signaling that they had observed the overexpression of MnSOD in mesenchymal-like breast cancers that exhibited increased migratory, invasive, and metastatic capacities. On the other hand, repression of MnSOD induced an epithelial phenotype with a reduction in EMT markers and cells' scattering, invasive, and motile capacity.

The positive correlation between MnSOD and EMT score was significant and consistent across all breast cancer subtypes. Similarly, a positive correlation of EMT score and MnSOD expression was observed in established cell lines derived from breast cancers exhibiting phenotypes ranging from the most epithelial to the most mesenchymal.

The investigators proposed that at the mechanistic level MnSOD appeared to drive epithelial to mesenchymal transition via its ability to modulate the cellular redox environment by adjusting the ratio of superoxide to hydrogen peroxide.

"By suppressing MnSOD expression or its activity in triple negative breast cancer patients, we are able to make the tumor cells less aggressive and more sensitive to chemotherapy," said senior author Dr. Alan Prem Kumar, principal associate in the Cancer Science Institute of Singapore at the National University of Singapore.

Related Links:
National University of Singapore

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centrifuge
Hematocrit Centrifuge 7511M4
New
Mycoplasma Pneumoniae Virus Test
Mycoplasma Pneumoniae Virus Detection Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.