We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Messenger RNA Quality Control Mechanism Explained

By Gerald M. Slutzky, PhD
Posted on 15 Nov 2016
Print article
Image: Schematic of a gateway in the nuclear membrane, known as the nuclear pore complex (NPC), and the proteins (shown as spheres) involved in transport and quality control of mRNAs (shown in red). A combination of a multitude of protein-protein interactions enables the cell to distinguish and keep aberrant mRNAs from exiting the nucleus (Photo courtesy of Mohammad Soheilypour, Berkeley National Laboratory).
Image: Schematic of a gateway in the nuclear membrane, known as the nuclear pore complex (NPC), and the proteins (shown as spheres) involved in transport and quality control of mRNAs (shown in red). A combination of a multitude of protein-protein interactions enables the cell to distinguish and keep aberrant mRNAs from exiting the nucleus (Photo courtesy of Mohammad Soheilypour, Berkeley National Laboratory).
Genomics researchers have described a mechanism that explains how molecules of messenger RNA (mRNA) are checked for accuracy before being released from the nucleus into the cytoplasm.

Export of mRNAs into the cytoplasm is a fundamental step in gene regulation processes, which undergo quality control by highly efficient mechanisms in eukaryotic cells. However, it remains unclear how the aberrant mRNAs are recognized and retained inside the nucleus.

To better understand the quality control process, investigators at Berkeley National Laboratory (CA, USA) and the University of California, Berkeley (USA) used a new modeling approach for complex systems, namely the agent-based modeling (ABM) approach, to develop a minimal model of the mRNA quality control (QC) mechanism.

They reported in the November 2, 2016, online edition of the journal Scientific Reports that regulation of the affinity of RNA-binding proteins (RBPs) to export receptors along with the weak interaction between the nuclear basket protein (Mlp1 or Tpr) and RBPs were the minimum requirements to distinguish and retain aberrant mRNAs. The results showed that the affinity between Tpr and RBPs was optimized to maximize the retention of aberrant mRNAs.

The length of the mRNA strand affected the QC process. Since longer mRNAs spent more time in the nuclear basket to form a compact conformation and initiate their export, nuclear basket proteins could more easily capture and retain them inside the nucleus.

"Just like all production lines, the process of genetic information transfer and protein production is quality controlled at different stages," said senior author Mohammad Mofrad, professor of bioengineering and of mechanical engineering at the University of California, Berkeley. "To date, the exact mechanism of this quality control step has remained unclear. Some components of this machinery are dysregulated in various types of cancers. Understanding the molecular mechanism of genetic information transport and quality control would substantially improve the current knowledge about various types of cancers and other human diseases."

Related Links:
Berkeley National Laboratory
University of California, Berkeley
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Fecal DNA Extraction Kit
QIAamp PowerFecal Pro DNA Kit
New
Silver Member
ACTH Assay
ACTH ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The research team has developed the uCR-Chip device to enhance kidney function testing (Photo courtesy of University of Manitoba)

Low-Cost Portable Screening Test to Transform Kidney Disease Detection

Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.