Novel Method Developed to Diagnose Buruli Ulcer
By LabMedica International staff writers Posted on 09 Nov 2016 |

Image: The Multiskan GO UV/Vis microplate spectrophotometer (Photo courtesy of Thermo Fisher Scientific).
A Buruli ulcer is a subcutaneous skin disease listed among the neglected tropical diseases, and early case detection and management is very important to reduce morbidity and the accompanied characteristic disfiguring nature of the disease.
The diagnosis of Buruli ulcer (BU) is based on clinical evidence that can lead to misdiagnosis, and microbiological confirmation is essential to reduce abuse of drugs, since the anti-mycobacterial drugs are also used for the treatment of tuberculosis.
Scientists associated with the University of Ghana (Accra, Ghana) developed a method to diagnose BU using aptamers that bind to the lipid particle mycolactone, which is produced by the causative agent Mycobacterium ulcerans. The team collected swabs and fine needle aspirations from 41 patients suspected of having BU. The samples were analyzed by polymerase chain reaction for the IS2404 sequence repeat, culture, and an enzyme-linked oligonucleotide assay (ELONA). Aptamers that bind to mycolactone were isolated by the systematic evolution of ligands by exponential enrichment (SELEX) process. To measure their affinity and specificity to mycolactone, the selected aptamers were screened by means of isothermal titration calorimetry. The ELONA assays measured at absorbance 450 nm using a MultiSkan Go plate reader (Thermo Fisher Scientific, Waltham MA, USA).
The investigators found that five out of the nine selected aptamers bound significantly to mycolactone, of these, three were able to distinguish between mycolactone producing mycobacteria, M. marinum and other bacteria whilst two others also bounded significantly to M. smegmatis. Their dissociation constants were in the micro-molar range. Fourteen swab samples tested positive for both culture and IS2404 PCR whilst positivity observed among the aptamers ranged from one to seven. The aptamer-based assay was used in a case control study and had a sensitivity of 50% and a specificity of 100%.
The aptamer-based test had a sensitivity of 50%, which is comparable to that of microscopy and culture, whilst the specificity is comparable to that of the IS2404 PCR. The authors concluded that their preliminary proof-of-concept indicates that diagnosis of Buruli Ulcer Disease with ribonucleic acid (RNA) aptamers is feasible and can be used as point of care upon incorporation into a diagnostic platform. The study was published on October 24, 2016, in the journal Public Library of Science Neglected Tropical Diseases.
Related Links:
University of Ghana
Thermo Fisher Scientific
The diagnosis of Buruli ulcer (BU) is based on clinical evidence that can lead to misdiagnosis, and microbiological confirmation is essential to reduce abuse of drugs, since the anti-mycobacterial drugs are also used for the treatment of tuberculosis.
Scientists associated with the University of Ghana (Accra, Ghana) developed a method to diagnose BU using aptamers that bind to the lipid particle mycolactone, which is produced by the causative agent Mycobacterium ulcerans. The team collected swabs and fine needle aspirations from 41 patients suspected of having BU. The samples were analyzed by polymerase chain reaction for the IS2404 sequence repeat, culture, and an enzyme-linked oligonucleotide assay (ELONA). Aptamers that bind to mycolactone were isolated by the systematic evolution of ligands by exponential enrichment (SELEX) process. To measure their affinity and specificity to mycolactone, the selected aptamers were screened by means of isothermal titration calorimetry. The ELONA assays measured at absorbance 450 nm using a MultiSkan Go plate reader (Thermo Fisher Scientific, Waltham MA, USA).
The investigators found that five out of the nine selected aptamers bound significantly to mycolactone, of these, three were able to distinguish between mycolactone producing mycobacteria, M. marinum and other bacteria whilst two others also bounded significantly to M. smegmatis. Their dissociation constants were in the micro-molar range. Fourteen swab samples tested positive for both culture and IS2404 PCR whilst positivity observed among the aptamers ranged from one to seven. The aptamer-based assay was used in a case control study and had a sensitivity of 50% and a specificity of 100%.
The aptamer-based test had a sensitivity of 50%, which is comparable to that of microscopy and culture, whilst the specificity is comparable to that of the IS2404 PCR. The authors concluded that their preliminary proof-of-concept indicates that diagnosis of Buruli Ulcer Disease with ribonucleic acid (RNA) aptamers is feasible and can be used as point of care upon incorporation into a diagnostic platform. The study was published on October 24, 2016, in the journal Public Library of Science Neglected Tropical Diseases.
Related Links:
University of Ghana
Thermo Fisher Scientific
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
Neutrophils, once believed to be uniform in nature, have been discovered to exhibit significant diversity. These immune cells, which play a crucial role in fighting infections, are also implicated in autoimmune... Read more
First-of-its-Kind Blood Test Detects Trauma-Related Diseases
In today’s fast-paced world, stress and trauma have unfortunately become common experiences for many individuals. Continuous exposure to stress hormones can confuse the immune system, causing it to misinterpret... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more