Two-Gene Panel Differentiates between Pediatric Bacterial and Viral Infections
By LabMedica International staff writers Posted on 06 Sep 2016 |

Image: An example of an approximately 40,000 probe spotted RNA microarray with enlarged inset to show detail (Photo courtesy of Wikimedia Commons).
A two-gene panel was shown to differentiate between viral and bacterial infections in children with fevers with 95-100% accuracy.
Since clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To solve this problem, investigators at Imperial College London (United Kingdom) sought to identify a blood RNA expression signature that could distinguish bacterial from viral infection in febrile children.
Toward this end, the investigators performed RNA microarray analysis screening on white blood cell samples taken from children with an average age of 19 months, who had arrived with fever at hospitals across the United Kingdom, Spain, the Netherlands and the USA. The children were placed into groups that were classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in a discovery group of 240 subjects, and diagnostic performance was assessed in the validation group of 130 subjects.
The discovery group of 240 children included 52 with definite bacterial infection, of whom 36 required intensive care, and 92 with definite viral infection, of whom 32 required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (two-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts.
When the two-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial and 27 of 28 patients with definite viral infection were classified as viral. Of the children in the indeterminate groups, 46.3% were classified as having bacterial infection, although 94.9% received antibiotic treatment.
Senior author Dr. Michael Levin, professor of medicine at Imperial College London, said, "Fever is one of the most common reasons children are brought to medical care. However every year many children are sent away from emergency departments or doctors' surgeries because the medical team thinks they have a viral infection, when in fact they are suffering from life-threatening bacterial infections - which are often only diagnosed too late. Conversely, many other children are admitted to hospital and receive antibiotics because the medical team is unable to immediately exclude the possibility of a bacterial infection - but in fact they are suffering from a virus. Although this research is at an early stage, the results show bacterial infection can be distinguished from other causes of fever, such as a viral infection, using the pattern of genes that are switched on or off in response to the infection. The challenge is now to transform our findings into a diagnostic test that can be used in hospital emergency departments or GP surgeries, to identify those children who need antibiotics."
Related Links:
Imperial College London
Since clinical features do not reliably distinguish bacterial from viral infection, many children worldwide receive unnecessary antibiotic treatment, while bacterial infection is missed in others. To solve this problem, investigators at Imperial College London (United Kingdom) sought to identify a blood RNA expression signature that could distinguish bacterial from viral infection in febrile children.
Toward this end, the investigators performed RNA microarray analysis screening on white blood cell samples taken from children with an average age of 19 months, who had arrived with fever at hospitals across the United Kingdom, Spain, the Netherlands and the USA. The children were placed into groups that were classified after microbiological investigation as having definite bacterial infection, definite viral infection, or indeterminate infection. RNA expression signatures distinguishing definite bacterial from viral infection were identified in a discovery group of 240 subjects, and diagnostic performance was assessed in the validation group of 130 subjects.
The discovery group of 240 children included 52 with definite bacterial infection, of whom 36 required intensive care, and 92 with definite viral infection, of whom 32 required intensive care. Ninety-six children had indeterminate infection. Analysis of RNA expression data identified a 38-transcript signature distinguishing bacterial from viral infection. A smaller (two-transcript) signature (FAM89A and IFI44L) was identified by removing highly correlated transcripts.
When the two-transcript signature was implemented as a disease risk score in the validation group (130 children, with 23 definite bacterial, 28 definite viral, and 79 indeterminate infections), all 23 patients with microbiologically confirmed definite bacterial infection were classified as bacterial and 27 of 28 patients with definite viral infection were classified as viral. Of the children in the indeterminate groups, 46.3% were classified as having bacterial infection, although 94.9% received antibiotic treatment.
Senior author Dr. Michael Levin, professor of medicine at Imperial College London, said, "Fever is one of the most common reasons children are brought to medical care. However every year many children are sent away from emergency departments or doctors' surgeries because the medical team thinks they have a viral infection, when in fact they are suffering from life-threatening bacterial infections - which are often only diagnosed too late. Conversely, many other children are admitted to hospital and receive antibiotics because the medical team is unable to immediately exclude the possibility of a bacterial infection - but in fact they are suffering from a virus. Although this research is at an early stage, the results show bacterial infection can be distinguished from other causes of fever, such as a viral infection, using the pattern of genes that are switched on or off in response to the infection. The challenge is now to transform our findings into a diagnostic test that can be used in hospital emergency departments or GP surgeries, to identify those children who need antibiotics."
Related Links:
Imperial College London
Latest Microbiology News
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
- Culture-Free Platform Rapidly Identifies Blood Stream Infections
- POC PCR Test Rapidly Detects Bacterial Meningitis Directly at Point of Sample Collection
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more
Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Approximately one in three women aged 14-49 in the United States will experience bacterial vaginosis (BV), a vaginal bacterial imbalance, at some point in their lives. Around 50% of BV cases do not present... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read morePathology
view channel
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more