Direct Molecular Detection of Bloodstream Infection Evaluated
By LabMedica International staff writers Posted on 02 Aug 2016 |

Image: The SepsiTest allows the reliable molecular analysis of whole blood samples for bacteremia and fungemia (Photo courtesy of Molzym).
Blood culture is the current gold standard for detecting bacteria in blood, requires at least 24 to 48 hours and has limited sensitivity if obtained during antibiotic treatment of the patient. Severe sepsis is sepsis associated with organ dysfunction, hypoperfusion, or hypotension.
Rapid diagnosis and appropriate antimicrobial therapy are of major importance to decrease morbidity and mortality in patients with blood stream infections (BSI). Sepsis, severe sepsis and septic shock are associated with high mortality, ranging from 20% to 60 % depending on severity and underlying disease. Septic shock is the persistence of hypotension and perfusion abnormalities despite adequate resuscitation therapy.
Scientists led by those at VU University Medical Center (Amsterdam, The Netherlands) carried out a prospective multicenter study to clinically evaluate the application of a commercial universal molecular test directly on whole blood. In total 236 samples from 166 patients with suspected sepsis were included in the study. The molecular test results were compared to blood culture, the current gold standard for detecting BSI. Because blood cultures can give false-negative results, the team performed an additional analysis to interpret the likelihood of bloodstream infection by using an evaluation based on clinical diagnosis, other diagnostic tests and laboratory parameters.
Fresh EDTA blood was divided into two aliquots of 1 mL and processed according to the SepsiTest protocol (PCR-ST, Molzym, Bremen, Germany). The SepsiTest assay selectively degrades human DNA, before isolation of the microbial DNA. SepsiTest can provide a positive or negative result within four hours and needs additional sequencing to identify the microorganism, which takes another two to three hours if sequencing is available in the laboratory.
The clinical interpretation of results defined the detected organism to be contaminants in 22/43 positive blood cultures (51.2 %) and 21/47 positive PCR-ST results (44.7 %). Excluding these contaminants resulted in an overall sensitivity and specificity of the PCR-ST of 66.7% and 94.4%, respectively. Of the 36 clinically relevant samples, 11 BSI were detected with both techniques, 15 BSI were detected with PCR-ST only and 10 with blood culture only. Therefore, in this study, SepsiTest detected an additional 71 % BSI compared to blood culture alone. The majority of detected microorganisms were staphylococci in both blood culture and PCR-ST.
The authors concluded that overall, PCR-ST results may influence the administration of adequate antimicrobial therapy and diminish patient’s morbidity and mortality. Although the SepsiTest PCR directly on blood is a promising technique, the input volume of blood should be increased to lower sampling error, and a faster procedure to identify the microorganism is of importance. The study was published on June 30, 2016, in the journal BMC Infectious Diseases.
Related Links:
VU University Medical Center
Molzym
Rapid diagnosis and appropriate antimicrobial therapy are of major importance to decrease morbidity and mortality in patients with blood stream infections (BSI). Sepsis, severe sepsis and septic shock are associated with high mortality, ranging from 20% to 60 % depending on severity and underlying disease. Septic shock is the persistence of hypotension and perfusion abnormalities despite adequate resuscitation therapy.
Scientists led by those at VU University Medical Center (Amsterdam, The Netherlands) carried out a prospective multicenter study to clinically evaluate the application of a commercial universal molecular test directly on whole blood. In total 236 samples from 166 patients with suspected sepsis were included in the study. The molecular test results were compared to blood culture, the current gold standard for detecting BSI. Because blood cultures can give false-negative results, the team performed an additional analysis to interpret the likelihood of bloodstream infection by using an evaluation based on clinical diagnosis, other diagnostic tests and laboratory parameters.
Fresh EDTA blood was divided into two aliquots of 1 mL and processed according to the SepsiTest protocol (PCR-ST, Molzym, Bremen, Germany). The SepsiTest assay selectively degrades human DNA, before isolation of the microbial DNA. SepsiTest can provide a positive or negative result within four hours and needs additional sequencing to identify the microorganism, which takes another two to three hours if sequencing is available in the laboratory.
The clinical interpretation of results defined the detected organism to be contaminants in 22/43 positive blood cultures (51.2 %) and 21/47 positive PCR-ST results (44.7 %). Excluding these contaminants resulted in an overall sensitivity and specificity of the PCR-ST of 66.7% and 94.4%, respectively. Of the 36 clinically relevant samples, 11 BSI were detected with both techniques, 15 BSI were detected with PCR-ST only and 10 with blood culture only. Therefore, in this study, SepsiTest detected an additional 71 % BSI compared to blood culture alone. The majority of detected microorganisms were staphylococci in both blood culture and PCR-ST.
The authors concluded that overall, PCR-ST results may influence the administration of adequate antimicrobial therapy and diminish patient’s morbidity and mortality. Although the SepsiTest PCR directly on blood is a promising technique, the input volume of blood should be increased to lower sampling error, and a faster procedure to identify the microorganism is of importance. The study was published on June 30, 2016, in the journal BMC Infectious Diseases.
Related Links:
VU University Medical Center
Molzym
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more