Mobile Phone-Based Microscopes Diagnose Intestinal Parasites
By LabMedica International staff writers Posted on 13 Jul 2016 |
Image: Handheld- and mobile phone-based microscopes: A) The Newton Nm1-600 XY portable field microscope B) The reversed-lens CellScope attached to an iPhone 5s (Photo courtesy of University Health Network).
Handheld, mobile phone-based microscopes can be used in developing countries after minimal training of community laboratory technicians to diagnose intestinal parasites quickly and accurately.
Intestinal worms affect almost two billion people world-wide, predominantly in areas with poor sanitation and unsafe water and in children, these parasites may lead to malnutrition, stunted growth and development and can lead to chronic disability, with serious health and economic consequences.
An international team of scientists led by those at the University of Toronto (ON, Canada) trained local laboratory technicians to operate the two handheld microscopes. In total, the technicians examined stool and urine samples from 226 individuals for the detection of parasites. The accuracy of all slides was evaluated by all microscopes: the two handheld devices, as well as a conventional, “gold standard” microscope.
The two portable handheld microscopes:tested were a commercial Newton Nm1 microscope (Newton Microscopes, Bedford, UK) and a mobile phone-based CellScope (CellScope Inc, San Francisco, CA, USA) which is essentially a smartphone with a special custom-fitted lens attached over the camera and light source, developed by engineers, to detect intestinal parasites. Slides were first evaluated using an Olympus CX21 microscope (Volketswil, Switzerland) as the gold standard.
The scientists reported that the two handheld microscopes were very good at ruling in infections, and the Newton portable microscope was able to detect even very low-burden infections. The CellScope missed some low-burden infections, however newer iterations of this device are currently being tested to increase its sensitivity.
Isaac I. Bogoch, MD, the lead investigator said, “It was heart-warming to see how well and easily these portable, handheld field microscopes were adopted and used in a rural setting. This will help us map out the areas of greatest need. Novel diagnostic approaches for common parasitic infections could have a profound impact on care of patients, as well as on public health approaches to screening in resource-poor areas.” The study was published on June 27, 2016, in the journal PLOS Neglected Tropical Diseases.
Related Links:
University of Toronto
Newton Microscopes
CellScope
Olympus
Intestinal worms affect almost two billion people world-wide, predominantly in areas with poor sanitation and unsafe water and in children, these parasites may lead to malnutrition, stunted growth and development and can lead to chronic disability, with serious health and economic consequences.
An international team of scientists led by those at the University of Toronto (ON, Canada) trained local laboratory technicians to operate the two handheld microscopes. In total, the technicians examined stool and urine samples from 226 individuals for the detection of parasites. The accuracy of all slides was evaluated by all microscopes: the two handheld devices, as well as a conventional, “gold standard” microscope.
The two portable handheld microscopes:tested were a commercial Newton Nm1 microscope (Newton Microscopes, Bedford, UK) and a mobile phone-based CellScope (CellScope Inc, San Francisco, CA, USA) which is essentially a smartphone with a special custom-fitted lens attached over the camera and light source, developed by engineers, to detect intestinal parasites. Slides were first evaluated using an Olympus CX21 microscope (Volketswil, Switzerland) as the gold standard.
The scientists reported that the two handheld microscopes were very good at ruling in infections, and the Newton portable microscope was able to detect even very low-burden infections. The CellScope missed some low-burden infections, however newer iterations of this device are currently being tested to increase its sensitivity.
Isaac I. Bogoch, MD, the lead investigator said, “It was heart-warming to see how well and easily these portable, handheld field microscopes were adopted and used in a rural setting. This will help us map out the areas of greatest need. Novel diagnostic approaches for common parasitic infections could have a profound impact on care of patients, as well as on public health approaches to screening in resource-poor areas.” The study was published on June 27, 2016, in the journal PLOS Neglected Tropical Diseases.
Related Links:
University of Toronto
Newton Microscopes
CellScope
Olympus
Latest Microbiology News
- High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes
- Innovative Diagnostic Approach for Bacterial Infections to Enable Faster and Effective Treatment
- Non-Invasive Stool Test to Diagnose Endometriosis and Help Reduce Disease Progression
- Automated Positive Blood Culture Sample Preparation Platform Designed to Fight Against Sepsis and AMR
- Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics
- New Digital PCR Assays Enable Accurate and Sensitive Detection of Critical Pathogens
- Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results
- AST System Delivers Actionable Results for Gram-Negative Bacteria Directly from Positive Blood Cultures
- Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours
- New Rapid Method for Determining Virus Infectivity Could Revolutionize Response to Future Pandemics
- Novel Molecular Test to Help Prevent and Control Multi Drug-Resistant Fungal Pathogen in Healthcare Settings
- Innovative C. Difficile Diagnostic Test Provides Both GDH and Toxin Results within 30 Minutes
- Rapid UTI Test Cuts Detection Time from 3 days to 45 Minutes
- POC STI Test Shortens Time from ED Arrival to Test Results
- Integrated Solution Ushers New Era of Automated Tuberculosis Testing
- Automated Sepsis Test System Enables Rapid Diagnosis for Patients with Severe Bloodstream Infections