Molecular Diagnostics Identify Resistance Biomarkers of Bloodstream Infection
By LabMedica International staff writers Posted on 02 May 2016 |

Image: The Verigene BC-GP assay system for the rapid detection of bloodstream infections (Photo courtesy of Nanosphere).
Molecular diagnostics allow for rapid identification and detection of resistance markers of bloodstream infection, with a potential for accelerated antimicrobial optimization and improved patient outcomes.
Bloodstream infections (BSIs) are associated with significant health care cost and prolonged hospital stays. Rapid initiation of effective antimicrobial treatment is a mainstay of therapy because delay is associated with increased morbidity and mortality. Novel methods that allow for rapid identification of pathogens, with the ability to detect resistance markers, are, therefore, promising tools to significantly affect overall patient care.
Scientists at the Keck School of Medicine (Los Angeles, CA, USA) determined the impact of a molecular blood-culture assay that identifies a broad-spectrum of pathogens and resistance markers in pediatric patients with gram-positive bloodstream infections. The team collected data on the time to antimicrobial optimization, the length of hospitalization, and the hospital cost following implementation of a rapid assay were prospectively collected and compared with corresponding preimplementation data.
Blood culture samples from pediatric patients, aged one day to 21 years, who presented with a blood culture positive for a gram-positive bacteria targeted by the Gram-Positive Blood Culture Nucleic Acid Test (BC-GP, Nanosphere Inc., Northbrook, IL, USA) were included. The microbiology laboratory operates and offers all tests 24 hours/day, seven days/week. Input from the infectious disease team was dependent on consultation request. Institutional policy mandates a consultation for all BSIs caused by Staphylococcus aureus. All blood culture specimens were obtained and processed using the BacT/ALERT (bioMérieux; Durham, NC, USA) automated blood culture system.
There were 440 episodes from 383 patients included: 221 preimplementation episodes and 219 postimplementation episodes. The BC-GP assay implementation significantly reduced the average time of Gram stain report to organism identification from 24.8 hours to 3.8 hours. In addition, time from Gram stain notification to detection of methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, and vancomycin-resistant enterococci was significantly shortened by 45.9 hours following BC-GP assay implementation (49.7 hours versus 3.8 hours). Median length of stay for patients admitted to general pediatric units was 1.5 days shorter, and median hospital cost was USD 3,757 less after implementation. For S. aureus bloodstream infections, median length of stay and hospital cost were decreased by 5.6 days and USD13, 341 respectively.
The authors concluded that implementation of molecular assay for the detection of gram-positive pathogens and resistance markers significantly reduced time to identification and resistance detection, resulting in accelerated optimization of therapy, shorter length of stay, and decreased health care cost. Implementation of the BC-GP assay contributed to a reduction in time to appropriate antimicrobial therapy, regardless of patient population, and a decrease in length of stay (LOS) and overall hospital costs among patients without other significant comorbidities. Further integration with the antimicrobial stewardship team may further improve time to optimal therapy and patient outcome. The study was published in the March 2016 issue of the journal Archives of Pathology & Laboratory Medicine.
Related Links:
Keck School of Medicine
Nanosphere
bioMérieux
Bloodstream infections (BSIs) are associated with significant health care cost and prolonged hospital stays. Rapid initiation of effective antimicrobial treatment is a mainstay of therapy because delay is associated with increased morbidity and mortality. Novel methods that allow for rapid identification of pathogens, with the ability to detect resistance markers, are, therefore, promising tools to significantly affect overall patient care.
Scientists at the Keck School of Medicine (Los Angeles, CA, USA) determined the impact of a molecular blood-culture assay that identifies a broad-spectrum of pathogens and resistance markers in pediatric patients with gram-positive bloodstream infections. The team collected data on the time to antimicrobial optimization, the length of hospitalization, and the hospital cost following implementation of a rapid assay were prospectively collected and compared with corresponding preimplementation data.
Blood culture samples from pediatric patients, aged one day to 21 years, who presented with a blood culture positive for a gram-positive bacteria targeted by the Gram-Positive Blood Culture Nucleic Acid Test (BC-GP, Nanosphere Inc., Northbrook, IL, USA) were included. The microbiology laboratory operates and offers all tests 24 hours/day, seven days/week. Input from the infectious disease team was dependent on consultation request. Institutional policy mandates a consultation for all BSIs caused by Staphylococcus aureus. All blood culture specimens were obtained and processed using the BacT/ALERT (bioMérieux; Durham, NC, USA) automated blood culture system.
There were 440 episodes from 383 patients included: 221 preimplementation episodes and 219 postimplementation episodes. The BC-GP assay implementation significantly reduced the average time of Gram stain report to organism identification from 24.8 hours to 3.8 hours. In addition, time from Gram stain notification to detection of methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, and vancomycin-resistant enterococci was significantly shortened by 45.9 hours following BC-GP assay implementation (49.7 hours versus 3.8 hours). Median length of stay for patients admitted to general pediatric units was 1.5 days shorter, and median hospital cost was USD 3,757 less after implementation. For S. aureus bloodstream infections, median length of stay and hospital cost were decreased by 5.6 days and USD13, 341 respectively.
The authors concluded that implementation of molecular assay for the detection of gram-positive pathogens and resistance markers significantly reduced time to identification and resistance detection, resulting in accelerated optimization of therapy, shorter length of stay, and decreased health care cost. Implementation of the BC-GP assay contributed to a reduction in time to appropriate antimicrobial therapy, regardless of patient population, and a decrease in length of stay (LOS) and overall hospital costs among patients without other significant comorbidities. Further integration with the antimicrobial stewardship team may further improve time to optimal therapy and patient outcome. The study was published in the March 2016 issue of the journal Archives of Pathology & Laboratory Medicine.
Related Links:
Keck School of Medicine
Nanosphere
bioMérieux
Latest Microbiology News
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
- Culture-Free Platform Rapidly Identifies Blood Stream Infections
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
HIV diagnostic methods have traditionally relied on detecting HIV-specific antibodies, which typically appear weeks after infection. This delayed detection has hindered early diagnosis, complicating patient... Read more
Blood Test Rules Out Future Dementia Risk
Previous studies have suggested that specific biomarkers, such as tau217, Neurofilament Light (NfL), and Glial Fibrillary Acidic Protein (GFAP), may be valuable for early dementia diagnosis.... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read more
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more