LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Metabolite Profiling Predicts Outcome of Dengue Virus Infection

By LabMedica International staff writers
Posted on 07 Mar 2016
Image: The transmission electron micrograph (TEM) shows a number of round Dengue virus particles in this tissue specimen (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
Image: The transmission electron micrograph (TEM) shows a number of round Dengue virus particles in this tissue specimen (Photo courtesy of the CDC – US Centers for Disease Control and Prevention).
Results of a proof-of-concept metabolomic study supported the potential use of metabolite profiling to predict the outcome of patients with Dengue virus infection.

Dengue fever is a mosquito-borne tropical disease caused by the Dengue virus. Symptoms typically begin three to fourteen days after infection. This may include a high fever, headache, vomiting, muscle and joint pains, and a characteristic skin rash. Recovery generally takes less than two to seven days. In a small proportion of cases, the disease develops into the life-threatening dengue hemorrhagic fever, resulting in bleeding, low levels of blood platelets and blood plasma leakage, or into dengue shock syndrome, where dangerously low blood pressure occurs.

As epidemics of dengue fever (DF) and dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) are overwhelming public health capacity for diagnosis and patient care in developing countries, identifying a panel of biomarkers in acute-phase serum specimens for prognosis of severe dengue disease would be of enormous value for appropriate triaging of patients for management.

Investigators at Colorado State University (Fort Collins, USA) decided to take advantage of advances in the field of metabolomics and analytic software to identify host small molecule biomarkers (SMBs) in acute phase clinical specimens that could differentiate dengue disease outcomes. Metabolomics is the analysis of low molecular weight biological molecules that result from metabolic processes. Disease states result in changes in metabolism in cells and systems that affect the profile of metabolites. Analysis of metabolite profiles in disease conditions and comparison with the profiles of non-diseased individuals can be used in diagnosis.

The investigators used hydrophilic interaction liquid chromatography (HILIC)-mass spectrometry (MS) to identify small molecule metabolites that were associated with and statistically differentiated DHF/DSS, DF, and non-dengue (ND) diagnosis groups. They worked with serum samples obtained from dengue patients from Nicaragua and Mexico.

Results revealed that in the Nicaraguan samples, 191 metabolites differentiated DF from ND outcomes and 83 differentiated DHF/DSS and DF outcomes, while in the Mexican samples, 306 metabolites differentiated DF from ND and 37 differentiated DHF/DSS and DF outcomes. Metabolomic analysis of serum samples from patients diagnosed as DF who progressed to DHF/DSS identified 65 metabolites that predicted dengue disease outcomes. The structural identities of 13 metabolites were confirmed using tandem mass spectrometry (MS/MS).

"Metabolomics provides new opportunities and a powerful approach to investigate potential viral, host, pathogenic, and immunological determinants of dengue infection and pathogenesis," said Dr. Barry Beaty, professor of virology at Colorado State University.

The work was published in the February 25, 2016, online edition of the journal PLOS Neglected Tropical Diseases.

Related Links:

Colorado State University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Human Estradiol Assay
Human Estradiol CLIA Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more