PCR-Based Blood Test Diagnoses Rare Childhood Germ Cell Cancer
By LabMedica International staff writers Posted on 28 Dec 2015 |

Image: Micrograph of a seminoma, a common germ cell tumor (Photo courtesy of Wikimedia Commons).
A team of British researchers has developed a noninvasive, low cost blood test for the diagnosis of rare childhood germ cell cancer.
The five year disease-free and overall survival rates for patients with high-risk malignant germ cell tumors are less than 50%, so improved diagnostic and monitoring techniques are required to improving outcomes for patients. Currently, biopsy is the most commonly used diagnostic method, but this technique is prone to sampling errors and may not be representative of the tumor as a whole. Computerized tomography (CT) scans and magnetic resonance imaging (MRI) also provide useful information but are not diagnostic and do not discriminate between benign and malignant tumors.
Investigators at the University of Cambridge (United Kingdom; www.cam.ac.uk) have now described a noninvasive, low cost blood test for the diagnosis of germ cell tumors.
This test is a qRT–PCR (quantitative real-time PCR [polymerase chain reaction]) profiling analysis of the microRNAs miR–371–373 and miR–302/367 cluster miRNAs, which are overexpressed in all malignant germ cell tumors. Some of these miRNAs show elevated serum levels at diagnosis.
MicroRNAs (miRNAs) are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
The investigators used their assay to evaluate a total of 45 serum and CSF samples, obtained from 25 pediatric patients. They found that a four-serum miRNA panel (miR–371a–3p, miR–372–3p, miR–373–3p, and miR–367–3p): (i) showed high sensitivity/specificity for diagnosing pediatric extracranial malignant germ cell tumor; (ii) allowed early detection of relapse of a testicular mixed malignant germ cell tumor; and (iii) distinguished intracranial malignant germ cell tumor from intracranial non-germ cell tumors at diagnosis, using CSF and serum samples.
"Although relatively rare, childhood germ cell tumors need to be diagnosed accurately and followed up carefully to give us the best chances of treating them," said senior author Dr. Nicholas Coleman, professor of pathology at the University of Cambridge. "At the moment, we are not good enough at diagnosing these tumors and monitoring their treatment: we need better, safer, and more cost-effective tests."
The study was published in the December 15, 2015, online edition of the British Journal of Cancer.
Related Links:
University of Cambridge
The five year disease-free and overall survival rates for patients with high-risk malignant germ cell tumors are less than 50%, so improved diagnostic and monitoring techniques are required to improving outcomes for patients. Currently, biopsy is the most commonly used diagnostic method, but this technique is prone to sampling errors and may not be representative of the tumor as a whole. Computerized tomography (CT) scans and magnetic resonance imaging (MRI) also provide useful information but are not diagnostic and do not discriminate between benign and malignant tumors.
Investigators at the University of Cambridge (United Kingdom; www.cam.ac.uk) have now described a noninvasive, low cost blood test for the diagnosis of germ cell tumors.
This test is a qRT–PCR (quantitative real-time PCR [polymerase chain reaction]) profiling analysis of the microRNAs miR–371–373 and miR–302/367 cluster miRNAs, which are overexpressed in all malignant germ cell tumors. Some of these miRNAs show elevated serum levels at diagnosis.
MicroRNAs (miRNAs) are a class of about 20 nucleotides-long RNA fragments that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA. With their capacity to fine-tune protein expression via sequence-specific interactions, miRNAs help regulate cell maintenance and differentiation.
The investigators used their assay to evaluate a total of 45 serum and CSF samples, obtained from 25 pediatric patients. They found that a four-serum miRNA panel (miR–371a–3p, miR–372–3p, miR–373–3p, and miR–367–3p): (i) showed high sensitivity/specificity for diagnosing pediatric extracranial malignant germ cell tumor; (ii) allowed early detection of relapse of a testicular mixed malignant germ cell tumor; and (iii) distinguished intracranial malignant germ cell tumor from intracranial non-germ cell tumors at diagnosis, using CSF and serum samples.
"Although relatively rare, childhood germ cell tumors need to be diagnosed accurately and followed up carefully to give us the best chances of treating them," said senior author Dr. Nicholas Coleman, professor of pathology at the University of Cambridge. "At the moment, we are not good enough at diagnosing these tumors and monitoring their treatment: we need better, safer, and more cost-effective tests."
The study was published in the December 15, 2015, online edition of the British Journal of Cancer.
Related Links:
University of Cambridge
Latest Pathology News
- Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
- World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
- Breakthrough Diagnostic Approach to Significantly Improve TB Detection
- Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
- Spit Test More Accurate at Identifying Future Prostate Cancer Risk
- DNA Nanotechnology Boosts Sensitivity of Test Strips
- Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
- New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
- "Metal Detector" Algorithm Hunts Down Vulnerable Tumors
- Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
- Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
- AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
Neutrophils, once believed to be uniform in nature, have been discovered to exhibit significant diversity. These immune cells, which play a crucial role in fighting infections, are also implicated in autoimmune... Read more
First-of-its-Kind Blood Test Detects Trauma-Related Diseases
In today’s fast-paced world, stress and trauma have unfortunately become common experiences for many individuals. Continuous exposure to stress hormones can confuse the immune system, causing it to misinterpret... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more