DNA in Blood Tracks Cancer Development and Response
By LabMedica International staff writers Posted on 23 Nov 2015 |

Image: The RainDrop droplet polymerase chain reaction system (Photo courtesy of RainDance Technologies).
Circulating tumor DNA analysis can be used to track tumor burden and analyze cancer genomes noninvasively, but the extent to which it represents metastatic heterogeneity is unknown.
Analysis of circulating tumor DNA in plasma (ctDNA) is a less-invasive approach than repeated metastatic tumor biopsies and could provide a summary of somatic alterations contributed by distinct metastases potentially circumventing the problem of spatial heterogeneity.
Scientists at the Cancer Research UK Cambridge Institute (University of Cambridge; UK) and their colleagues carried out an extensive analysis of eight tumor biopsies and nine plasma samples collected from a patient with estrogen receptor-positive (ER+) human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer treated with sequential targeted therapies (tamoxifen and trastuzumab, followed by lapatinib) over a three year clinical course. They performed whole-exome followed by deep amplicon sequencing to validate and quantify several hundred somatic mutations.
Exome sequencing of tumor samples and additional sequencing of germline DNA (N1) was performed using commercially available kits. Genomic libraries were quantified using quantitative polymerase chain reaction (qPCR) and pooled for exome enrichment by hybridization using the TruSeq Exome Enrichment Kit and enriched libraries were quantified using qPCR and pooled for sequencing on the HiSeq 2500 (Illumina; San Diego, CA, USA). Targeted sequencing libraries were prepared using droplet-based PCR amplification for ThunderBolts Cancer Panel with specific modifications (RainDance Technologies; Billerica, MA, USA).
The team carefully studied small fragments of DNA from dying tumor cells that are shed into the blood, comparing them with DNA from the biopsy that was taken at the same point in time. The results show that the DNA in the blood samples matched up with that from the biopsies, reflecting the same pattern and timing of genetic changes appearing as the cancer developed and responded to treatment. The results provide the first proof-of-principle that analyzing tumor DNA in the blood can accurately monitor cancer within the body.
Carlos Caldas, MD, a professor of oncology and senior author of the study, said, “This definitively shows that we can use blood-based DNA tests to track the progress of cancer in real time. The findings could change the way we monitor patients, and may be especially important for people with cancers that are difficult to reach, as taking a biopsy can sometimes be quite an invasive procedure. We were able to use the blood tests to map out the disease as it progressed. We now need to see if this works in more patients and other cancer types, but this is an exciting first step.” The study was published on November 4, 2015, in the journal Nature Communications.
Related Links:
Cancer Research UK Cambridge Institute
Illumina
RainDance Technologies
Analysis of circulating tumor DNA in plasma (ctDNA) is a less-invasive approach than repeated metastatic tumor biopsies and could provide a summary of somatic alterations contributed by distinct metastases potentially circumventing the problem of spatial heterogeneity.
Scientists at the Cancer Research UK Cambridge Institute (University of Cambridge; UK) and their colleagues carried out an extensive analysis of eight tumor biopsies and nine plasma samples collected from a patient with estrogen receptor-positive (ER+) human epidermal growth factor receptor 2-positive (HER2+) metastatic breast cancer treated with sequential targeted therapies (tamoxifen and trastuzumab, followed by lapatinib) over a three year clinical course. They performed whole-exome followed by deep amplicon sequencing to validate and quantify several hundred somatic mutations.
Exome sequencing of tumor samples and additional sequencing of germline DNA (N1) was performed using commercially available kits. Genomic libraries were quantified using quantitative polymerase chain reaction (qPCR) and pooled for exome enrichment by hybridization using the TruSeq Exome Enrichment Kit and enriched libraries were quantified using qPCR and pooled for sequencing on the HiSeq 2500 (Illumina; San Diego, CA, USA). Targeted sequencing libraries were prepared using droplet-based PCR amplification for ThunderBolts Cancer Panel with specific modifications (RainDance Technologies; Billerica, MA, USA).
The team carefully studied small fragments of DNA from dying tumor cells that are shed into the blood, comparing them with DNA from the biopsy that was taken at the same point in time. The results show that the DNA in the blood samples matched up with that from the biopsies, reflecting the same pattern and timing of genetic changes appearing as the cancer developed and responded to treatment. The results provide the first proof-of-principle that analyzing tumor DNA in the blood can accurately monitor cancer within the body.
Carlos Caldas, MD, a professor of oncology and senior author of the study, said, “This definitively shows that we can use blood-based DNA tests to track the progress of cancer in real time. The findings could change the way we monitor patients, and may be especially important for people with cancers that are difficult to reach, as taking a biopsy can sometimes be quite an invasive procedure. We were able to use the blood tests to map out the disease as it progressed. We now need to see if this works in more patients and other cancer types, but this is an exciting first step.” The study was published on November 4, 2015, in the journal Nature Communications.
Related Links:
Cancer Research UK Cambridge Institute
Illumina
RainDance Technologies
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more