LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Recent Mutations Responsible for Plague Bacteria's Virulence

By LabMedica International staff writers
Posted on 12 Jul 2015
Image: Scanning electron microscope micrograph showing a mass of Yersinia pestis bacteria in the foregut of an infected flea (Photo courtesy of the [US] National Institutes of Health).
Image: Scanning electron microscope micrograph showing a mass of Yersinia pestis bacteria in the foregut of an infected flea (Photo courtesy of the [US] National Institutes of Health).
A team of molecular microbiologists has found that acquisition of single protein early in its existence enabled the plague bacterium Yersinia pestis to invade lung tissue, but that it required later mutations of this gene to enable the organism to rapidly spread to the lymph nodes and cause the bubonic form of the disease.

Yersinia pestis, a Gram-negative bacterium that causes bubonic and pneumonic plague, is able to rapidly disseminate to other parts of its mammalian hosts. Y. pestis expresses the enzyme plasminogen activator (Pla) on its surface, which has been suggested to play a role in bacterial dissemination.

Investigators at Northwestern University (Evanston, IL, USA) worked with ancestral strains of Y. pestis in mouse models. They found that the acquisition of a single gene encoding the protease Pla was sufficient for the most ancestral, deeply rooted strains of Y. pestis to cause pneumonic plague, indicating that Y. pestis was primed to infect the lungs at a very early stage in its evolution. However, at this stage the bacterium did not cause the fulminating form of pneumatic plague, nor could it disseminate to the lymph nodes to cause the bubonic form.

It became apparent that as Y. pestis further evolved, modern strains acquired a single amino-acid modification within Pla that optimized protease activity. While this modification was unnecessary to cause pneumonic plague, the substitution was instead needed to efficiently induce the invasive infection associated with bubonic plague.

"Our findings demonstrate how Y. pestis had the ability to cause a severe respiratory disease very early in its evolution," said senior author Dr. Wyndham Lathem, assistant professor of microbiology and immunology at Northwestern University. "This research helps us better understand how bacteria can adapt to new host environments to cause disease by acquiring small bits of DNA. Our data suggests that the insertion and then subsequent mutation of Pla allowed for new, rapidly evolving strains of disease. This information can show how new respiratory pathogens could emerge with only small genetic changes."

The study was published in the June 30, 2015, online edition of the journal Nature Communications.

Related Links:
Northwestern University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sample Transportation System
Tempus1800 Necto
Alcohol Testing Device
Dräger Alcotest 7000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more