LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Recent Indian Swine Flu Isolates Display Mutations for Increased Virulence

By LabMedica International staff writers
Posted on 22 Mar 2015
Image: Colorized transmission electron micrograph (TEM) showing H1N1 influenza virus particles (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).
Image: Colorized transmission electron micrograph (TEM) showing H1N1 influenza virus particles (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).
Newly generated data regarding the H1N1 strain of swine flu that has killed more than 1,200 since December 2014 suggests that the virus has acquired mutations that make it more dangerous than previously circulating strains of H1N1 influenza.

Investigators at the Massachusetts Institute of Technology (Cambridge) compared the genetic sequences of two Indian swine flu strains that recently had been deposited into publicly available influenza databases to the strain of H1N1 that emerged in 2009 and killed more than 18,000 people worldwide between 2009 and 2012.

They found that that the recent Indian strains carried new mutations in the hemagglutinin protein (H1) that were known to be capable of increasing the virulence of the virus. One of the new mutations was in amino acid position D225, which had been linked with increased disease severity. Another mutation, in the T200A position, allowed hemagglutinin to bind more strongly to glycan receptors, making the virus more infectious.

These findings apparently contradict previous reports from Indian health officials that the strain had not diverged from the 2009 H1N1 version.

“We are really caught between a rock and a hard place, with little information and a lot of misinformation,” said senior author Dr. Ram Sasisekharan, professor of biological engineering at the Massachusetts Institute of Technology. “When you do real-time surveillance, get organized, and deposit these sequences, then you can come up with a better strategy to respond to the virus. The point we are trying to make is that there is a real need for aggressive surveillance to ensure that the anxiety and hysteria are brought down and people are able to focus on what they really need to worry about. We need to understand the pathology and the severity, rather than simply relying on anecdotal information. The goal is to get a clearer picture of the strains that are circulating and therefore anticipate the right kind of a vaccine strategy for 2016.”

The report was published in the March 11, 2015, issue of the journal Cell Host & Microbe.

Related Links:

Massachusetts Institute of Technology


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hybrid Pipette
SWITCH
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more