Degree of Genomic Damage and Hypoxia Predict Likelihood of Prostate Cancer Relapse
|
By LabMedica International staff writers Posted on 23 Nov 2014 |
A team of Canadian cancer researchers has developed a test based on genetic and environmental indices that distinguishes between prostate cancer patients with low or high risk of relapse following treatment.
Clinical prognostic groupings for localized prostate cancers are imprecise, with the tumor recurring in 30%–50% of patients following image-guided radiotherapy or radical prostatectomy. Investigators at the Princess Margaret Cancer Center (Toronto, ON, Canada) tested combined genomic and environmental (level of hypoxia) indices in prostate cancer to improve risk stratification and complement clinical prognostic factors in order to differentiate between patients with high or low risk of relapse.
To this end they worked with two groups of patients. DNA was extracted from pretreatment biopsies that consisted of at least 70% tumor cells as estimated by a pathologist, and a custom DNA array was used to detect gene copy number alterations. Intraglandular measurements of partial oxygen pressure were taken before radiotherapy with an ultrasound-guided transrectal needle piezoelectrode.
In the first group of patients, the investigators analyzed DNA from initial diagnostic biopsies of 126 men who were treated with image-guided radiotherapy (IGRT) and followed for an average 7.8 years. In the second group, they applied the test to 150 men whose tumors were removed surgically (radical prostatectomy).
Results revealed that patients with the best outcomes—less than 7% recurrence of prostate cancer at five years—had fewer genetic changes and lower levels of hypoxia. For men with multiple genetic changes and high levels of hypoxia, outcomes were worse—more than 50% of patients had recurrence.
Senior author Dr. Robert Bristow, a clinician-scientist at Princess Margaret Cancer Center, said, "This genetic test could increase cure rates in intermediate to high-risk men by preventing progression to this metastatic spread of prostate cancer. The next step will be testing the gene signature on many more patients worldwide for three to five years to turn the test into one that is readily available in the clinic to guide personalized prostate cancer treatments."
"Our findings set the stage to tackle the ongoing clinical problem of under-treating men with aggressive disease that will recur in 30% to 50% of patients due to hidden, microscopic disease that is already outside the prostate gland during initial treatment," said Dr. Bristow. "The clinical potential is enormous for thousands of patients. This is personalized cancer medicine to the hilt–the ability to provide more targeted treatment to patients based on their unique cancer genetic fingerprint plus what is going on in the cancer cell's surrounding environment. We hope to improve cure rates by reducing the chances of the cancer recurring and prevent the cells from spreading."
The study was published in the November 12, 2014, online edition of the journal Lancet Oncology.
Related Links:
Princess Margaret Cancer Center
Clinical prognostic groupings for localized prostate cancers are imprecise, with the tumor recurring in 30%–50% of patients following image-guided radiotherapy or radical prostatectomy. Investigators at the Princess Margaret Cancer Center (Toronto, ON, Canada) tested combined genomic and environmental (level of hypoxia) indices in prostate cancer to improve risk stratification and complement clinical prognostic factors in order to differentiate between patients with high or low risk of relapse.
To this end they worked with two groups of patients. DNA was extracted from pretreatment biopsies that consisted of at least 70% tumor cells as estimated by a pathologist, and a custom DNA array was used to detect gene copy number alterations. Intraglandular measurements of partial oxygen pressure were taken before radiotherapy with an ultrasound-guided transrectal needle piezoelectrode.
In the first group of patients, the investigators analyzed DNA from initial diagnostic biopsies of 126 men who were treated with image-guided radiotherapy (IGRT) and followed for an average 7.8 years. In the second group, they applied the test to 150 men whose tumors were removed surgically (radical prostatectomy).
Results revealed that patients with the best outcomes—less than 7% recurrence of prostate cancer at five years—had fewer genetic changes and lower levels of hypoxia. For men with multiple genetic changes and high levels of hypoxia, outcomes were worse—more than 50% of patients had recurrence.
Senior author Dr. Robert Bristow, a clinician-scientist at Princess Margaret Cancer Center, said, "This genetic test could increase cure rates in intermediate to high-risk men by preventing progression to this metastatic spread of prostate cancer. The next step will be testing the gene signature on many more patients worldwide for three to five years to turn the test into one that is readily available in the clinic to guide personalized prostate cancer treatments."
"Our findings set the stage to tackle the ongoing clinical problem of under-treating men with aggressive disease that will recur in 30% to 50% of patients due to hidden, microscopic disease that is already outside the prostate gland during initial treatment," said Dr. Bristow. "The clinical potential is enormous for thousands of patients. This is personalized cancer medicine to the hilt–the ability to provide more targeted treatment to patients based on their unique cancer genetic fingerprint plus what is going on in the cancer cell's surrounding environment. We hope to improve cure rates by reducing the chances of the cancer recurring and prevent the cells from spreading."
The study was published in the November 12, 2014, online edition of the journal Lancet Oncology.
Related Links:
Princess Margaret Cancer Center
Latest Pathology News
- Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
- AI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
- AI Tool Rapidly Analyzes Complex Cancer Images for Personalized Treatment
- Diagnostic Technology Performs Rapid Biofluid Analysis Using Single Droplet
- Novel Technology Tracks Hidden Cancer Cells Faster
- AI Tool Improves Breast Cancer Detection
- AI Tool Predicts Treatment Success in Rectal Cancer Patients
- Blood Test and Sputum Analysis Predict Acute COPD Exacerbation
- AI Tool to Transform Skin Cancer Detection with Near-Perfect Accuracy
- Unique Immune Signatures Distinguish Rare Autoimmune Condition from Multiple Sclerosis
- Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
- Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
- AI Tool Improves Accuracy of Skin Cancer Detection
- Highly Sensitive Imaging Technique Detects Myelin Damage
- 3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
- New Molecular Analysis Tool to Improve Disease Diagnosis
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read moreTechnology
view channel
Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Identifying which genetic variants actually cause disease remains one of the biggest challenges in genomic medicine. Each person carries tens of thousands of DNA changes, yet only a few meaningfully alter... Read more
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








