LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Image Recognition Software Increases Accuracy of Malaria Diagnosis

By LabMedica International staff writers
Posted on 31 Aug 2014
Print article
Image: The parasite detection method is based on computer vision algorithms similar to those used in facial recognition systems combined with visualization of only the diagnostically most relevant areas. Tablet computers can be utilized in viewing the images (Photo courtesy of the Institute for Molecular Medicine).
Image: The parasite detection method is based on computer vision algorithms similar to those used in facial recognition systems combined with visualization of only the diagnostically most relevant areas. Tablet computers can be utilized in viewing the images (Photo courtesy of the Institute for Molecular Medicine).
A facial recognition software program has been adapted to assist in the identification of the malaria parasite by microscopic examination of blood smears.

To develop a simpler, more effective visual method to diagnose malaria, a team of Scandinavian researchers coopted computer vision algorithms similar to those used in facial recognition systems. The program operates on a digitalized image of a thin layer of blood that had been smeared on a microscope slide. The algorithm analyzes more than 50,000 red blood cells per sample and ranks them according to likelihood of the cell being infected. The program then generates a panel of images of about a hundred cells most likely to contain the parasite. This panel is then evaluated by an experience microscopist who makes the final diagnosis.

To verify the technique Giemsa-stained thin blood films with Plasmodium falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast, and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples.

From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by an automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97.

"We are not suggesting that the whole malaria diagnostic process could or should be automated. Rather, our aim is to develop methods that are significantly less labor intensive than the traditional ones and have a potential to considerably increase the throughput in malaria diagnostics," said senior author Dr. Johan Lundin, research director at the Institute for Molecular Medicine (Helsinki, Finland).

The study with complete description of the new diagnostic approach was published in the August 21, 2014, online edition of the journal PLOS One.

Related Links:

Institute for Molecular Medicine


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
Total 25-Hydroxyvitamin D₂ & D₃ Assay

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.