LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Microarray Diagnostic Tool Helps Diagnose Valley Fever

By LabMedica International staff writers
Posted on 05 Aug 2014
Print article
Image: Photomicrograph of Coccidioides immitis in lung tissue showing as large, irregularly sized thick walled spherules (Photo courtesy of Dr. William McDonald, MD).
Image: Photomicrograph of Coccidioides immitis in lung tissue showing as large, irregularly sized thick walled spherules (Photo courtesy of Dr. William McDonald, MD).
Valley fever (VF) is a fungal respiratory infection and can be acquired when microscopic spores of the soil-dwelling fungus are inhaled and VF is difficult to diagnose partly because symptoms are confounded with other community-acquired pneumonias.

Two forms of the fungus exist, Coccidioides immitis and C. posadasii and confirmatory diagnostics detect immunoglobulin M (IgM) and IgG antibodies against Coccidioidal antigens via immunodiffusion (ID). However the false negative rate can be as high as 50% to 70% with 5% of symptomatic patients never showing detectable antibody levels.

Scientists at Arizona State University (Temple, AZ, USA) obtained a cohort of 55 VF samples and a blinded test set of 67 samples as de-identified human patient sera. In order to test whether different infections are discernable, patient sera representing 19 Aspergillus fumigatus, 19 Mycoplasma pneumoniae, and 19 Chlamydia pneumoniae samples were processed alongside 18 VF and 31 healthy sera.

The microarray platform consists of a glass slide imprinted with 10,000 (10K) peptides. Each peptide consists of a string of 20 amino acids, randomly arranged. The power of the technology resides in the fact that the randomly generated peptides are not based on natural antigens to Coccidioides or indeed, any disease. They are "unbiased" to the nature of particular disease antibodies and can therefore act as a sort of universal diagnostic. The peptides are spotted onto standard slides using noncontact piezo printer. The slides were scanned on the SureScan Microarray C Scanner (Agilent Technologies; Santa Clara, CA, USA). Once an immunosignature for VF was established using the 10K peptide microarray, a smaller diagnostic array was composed from relevant diagnostic peptides. This smaller 96-peptide array was then tested for accuracy against the current immunodiffusion diagnostic standard.

The 10K peptide array successfully distinguished Valley fever from three other infections, with 98% accuracy. Impressively, the method also was able to classify false negative VF patients in a blinded test, with 100% accuracy, easily outpacing existing immunodiffusion methods, which could only identify 28% of false negatives. The smaller, 96 peptide diagnostic array showed less specificity than the 10K peptide array in terms of identifying false negatives. The authors propose that the larger 10K peptide array be used in initial screenings, followed by subarrays with reduced complements of carefully selected peptides, used for clinical diagnosis. The study was published ahead of print on June 25, 2014, in the journal Clinical and Vaccine Immunology.

Related Links:

Arizona State University
Agilent Technologies 


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Piezoelectric Micropump
Disc Pump
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.