Molecular Test Effectively Guides Extent of Initial Thyroidectomy
By LabMedica International staff writers Posted on 05 Aug 2014 |

Image: Papillary thyroid cancer showing grey lobulated tumor with central scar (Photo courtesy of Dr. Shahidul Islam).
The routine use of a molecular testing panel increases the likelihood of performing the correct initial surgery for patients with thyroid nodules and cancer.
A clinical algorithm using routine cytological molecular testing (MT) promotes initial total thyroidectomy (TT) for clinically significant thyroid cancer (sTC) and/or correctly limits surgery to lobectomy when appropriate. Either TT or lobectomy is often needed to diagnose differentiated thyroid cancer and determining the correct extent of initial thyroidectomy is challenging.
Scientists at the University of Pittsburgh Medical Center (Pittsburgh, PA, USA) conducted a single-institution cohort study of 671 patients with nonmalignant cytology who had thyroidectomy between October 2010 and March 2012. Cytological diagnosis was made using the 2008 Bethesda criteria, and one or more indications for thyroidectomy. The patients who received biopsies all had suspicious thyroid nodes.
Approximately half the biopsy samples were run through the molecular panel, and the other half were not. Patients whose tissue samples were not tested with the panel had a 2.5-fold higher statistically significant likelihood of having an initial lobectomy and then requiring a second operation. Using a routine algorithm for prospective MT, the team demonstrated that the likelihood of optimal initial thyroid surgery is increased by the reflexive use of testing a molecular marker panel of proto-oncogene B-Raf (BRAF), Rat sarcoma (RAS), Paired box gene 8- peroxisome proliferator-activated receptor γ 1 (PAX8-PPARγ), and Rearranged in Transformation/Papillary Thyroid Carcinomas (RET-PTC) on fine needle aspiration biopsy (FNAB) specimens.
By analyzing new data from a single institution that has been prospectively and routinely using FNAB-MT since 2007, the investigators observed that, overall, FNAB-MT facilitated a 30% increase in the appropriate use of initial TT for sTC histology and a 33% increase in the appropriate use of initial lobectomy for non-sTC histology. Yuri Nikiforov, MD, PhD, a professor of pathology and coauthor of the study said, “We're currently refining the panel by adding tests for more genetic mutations, thereby making it even more accurate. Thyroid cancer is usually very curable, and we are getting closer to quickly and efficiently identifying and treating all cases of thyroid cancer.” The study was published in July 2014 issue of the Annals of Surgery.
Related Links:
University of Pittsburgh Medical Center
A clinical algorithm using routine cytological molecular testing (MT) promotes initial total thyroidectomy (TT) for clinically significant thyroid cancer (sTC) and/or correctly limits surgery to lobectomy when appropriate. Either TT or lobectomy is often needed to diagnose differentiated thyroid cancer and determining the correct extent of initial thyroidectomy is challenging.
Scientists at the University of Pittsburgh Medical Center (Pittsburgh, PA, USA) conducted a single-institution cohort study of 671 patients with nonmalignant cytology who had thyroidectomy between October 2010 and March 2012. Cytological diagnosis was made using the 2008 Bethesda criteria, and one or more indications for thyroidectomy. The patients who received biopsies all had suspicious thyroid nodes.
Approximately half the biopsy samples were run through the molecular panel, and the other half were not. Patients whose tissue samples were not tested with the panel had a 2.5-fold higher statistically significant likelihood of having an initial lobectomy and then requiring a second operation. Using a routine algorithm for prospective MT, the team demonstrated that the likelihood of optimal initial thyroid surgery is increased by the reflexive use of testing a molecular marker panel of proto-oncogene B-Raf (BRAF), Rat sarcoma (RAS), Paired box gene 8- peroxisome proliferator-activated receptor γ 1 (PAX8-PPARγ), and Rearranged in Transformation/Papillary Thyroid Carcinomas (RET-PTC) on fine needle aspiration biopsy (FNAB) specimens.
By analyzing new data from a single institution that has been prospectively and routinely using FNAB-MT since 2007, the investigators observed that, overall, FNAB-MT facilitated a 30% increase in the appropriate use of initial TT for sTC histology and a 33% increase in the appropriate use of initial lobectomy for non-sTC histology. Yuri Nikiforov, MD, PhD, a professor of pathology and coauthor of the study said, “We're currently refining the panel by adding tests for more genetic mutations, thereby making it even more accurate. Thyroid cancer is usually very curable, and we are getting closer to quickly and efficiently identifying and treating all cases of thyroid cancer.” The study was published in July 2014 issue of the Annals of Surgery.
Related Links:
University of Pittsburgh Medical Center
Latest Pathology News
- AI Model Predicts Patient Response to Bladder Cancer Treatment
- New Laser-Based Method to Accelerate Cancer Diagnosis
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreMolecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more