Infrared Spectroscopy Combined with AI Automates Detection of Staphylococcus aureus
By LabMedica International staff writers Posted on 24 Jul 2013 |

Image: Staphylococcus aureus bacteria (Photo courtesy of the University of Veterinary Medicine, Vienna).
The combination of Fourier transform infrared spectroscopy (FTIR) and artificial neuronal network (ANN) analysis constitutes a system that allows rapid identification and discrimination of the clinically important Staphylococcus aureus capsular serotypes 5, 8, and NT (nontypeable).
The term Fourier transform infrared spectroscopy originates from the fact that a Fourier transform is required to convert the raw data into the actual spectrum. An instrument employing this technique shines a beam containing many frequencies of light at once, and measures how much of that beam is absorbed by the sample. Next, the beam is modified to contain a different combination of frequencies, giving a second data point. This process is repeated many times. Afterwards, a computer takes all these data and works backwards to infer what the absorption was at each wavelength.
Investigators at the University of Veterinary Medicine (Vienna, Austria) combined FTIR spectroscopy with a computerized self-learning system known as an artificial neuronal network (ANN). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype was used to "teach" the system to recognize the spectra emitted by the capsular polysaccharides (CP) present on the surface of the clinically relevant strains of S. aureus.
Studies carried out with the high-throughput ANN-assisted FTIR spectroscopy CP typing system yielded overall accuracy of 96.7% for internal validation and 98.2% for external validation. These results support the use of this system for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression,
Senior author Dr. Monika Ehling-Schulz, professor of functional microbiology at the University of Veterinary Medicine, said, "In principle, germs have two choices when they infect a host: attack or hide—in technical terms virulence or persistence. If they attack, they risk destroying the host and consequently themselves, whereas if they hide, they may be outcompeted by others. A detailed knowledge of the mechanisms of virulence and persistence and the way bacteria switch between them will help us to develop novel and more effective therapies."
A full description of the ANN-assisted FTIR spectroscopy CP typing system was published in the July 2013 issue of the Journal of Clinical Microbiology.
Related Links:
University of Veterinary Medicine
The term Fourier transform infrared spectroscopy originates from the fact that a Fourier transform is required to convert the raw data into the actual spectrum. An instrument employing this technique shines a beam containing many frequencies of light at once, and measures how much of that beam is absorbed by the sample. Next, the beam is modified to contain a different combination of frequencies, giving a second data point. This process is repeated many times. Afterwards, a computer takes all these data and works backwards to infer what the absorption was at each wavelength.
Investigators at the University of Veterinary Medicine (Vienna, Austria) combined FTIR spectroscopy with a computerized self-learning system known as an artificial neuronal network (ANN). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype was used to "teach" the system to recognize the spectra emitted by the capsular polysaccharides (CP) present on the surface of the clinically relevant strains of S. aureus.
Studies carried out with the high-throughput ANN-assisted FTIR spectroscopy CP typing system yielded overall accuracy of 96.7% for internal validation and 98.2% for external validation. These results support the use of this system for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression,
Senior author Dr. Monika Ehling-Schulz, professor of functional microbiology at the University of Veterinary Medicine, said, "In principle, germs have two choices when they infect a host: attack or hide—in technical terms virulence or persistence. If they attack, they risk destroying the host and consequently themselves, whereas if they hide, they may be outcompeted by others. A detailed knowledge of the mechanisms of virulence and persistence and the way bacteria switch between them will help us to develop novel and more effective therapies."
A full description of the ANN-assisted FTIR spectroscopy CP typing system was published in the July 2013 issue of the Journal of Clinical Microbiology.
Related Links:
University of Veterinary Medicine
Latest Microbiology News
- Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
- New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
- Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
- Innovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
- Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
- Rapid PCR Testing in ICU Improves Antibiotic Stewardship
- Unique Genetic Signature Predicts Drug Resistance in Bacteria
- Unique Barcoding System Tracks Pneumonia-Causing Bacteria as They Infect Blood Stream
- Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application
- Rapid Diagnostic System to Detect Neonatal Sepsis Within Hours
- Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood
- Interferon-γ Release Assay Effective in Patients with COPD Complicated with Pulmonary Tuberculosis
- New Point of Care Tests to Help Reduce Overuse of Antibiotics
- 30-Minute Sepsis Test Differentiates Bacterial Infections, Viral Infections, and Noninfectious Disease
- CRISPR-TB Blood Test to Enable Early Disease Diagnosis and Public Screening
- Syndromic Panel Provides Fast Answers for Outpatient Diagnosis of Gastrointestinal Conditions
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read morePathology
view channel
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more
New Error-Corrected Method to Help Detect Cancer from Blood Samples Alone
"Liquid biopsy" technology, which relies on blood tests for early cancer detection and monitoring cancer burden in patients, has the potential to transform cancer care. However, detecting the mutational... Read more
"Metal Detector" Algorithm Hunts Down Vulnerable Tumors
Scientists have developed an algorithm capable of functioning as a "metal detector" to identify vulnerable tumors, marking a significant advancement in personalized cancer treatment. This breakthrough... Read more
Novel Technique Uses ‘Sugar’ Signatures to Identify and Classify Pancreatic Cancer Cell Subtypes
Pancreatic cancer is often asymptomatic in its early stages, making it difficult to detect until it has progressed. Consequently, only 15% of pancreatic cancers are diagnosed early enough to allow for... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more