LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Infrared Spectroscopy Combined with AI Automates Detection of Staphylococcus aureus

By LabMedica International staff writers
Posted on 24 Jul 2013
Print article
Image: Staphylococcus aureus bacteria (Photo courtesy of the University of Veterinary Medicine, Vienna).
Image: Staphylococcus aureus bacteria (Photo courtesy of the University of Veterinary Medicine, Vienna).
The combination of Fourier transform infrared spectroscopy (FTIR) and artificial neuronal network (ANN) analysis constitutes a system that allows rapid identification and discrimination of the clinically important Staphylococcus aureus capsular serotypes 5, 8, and NT (nontypeable).

The term Fourier transform infrared spectroscopy originates from the fact that a Fourier transform is required to convert the raw data into the actual spectrum. An instrument employing this technique shines a beam containing many frequencies of light at once, and measures how much of that beam is absorbed by the sample. Next, the beam is modified to contain a different combination of frequencies, giving a second data point. This process is repeated many times. Afterwards, a computer takes all these data and works backwards to infer what the absorption was at each wavelength.

Investigators at the University of Veterinary Medicine (Vienna, Austria) combined FTIR spectroscopy with a computerized self-learning system known as an artificial neuronal network (ANN). A comprehensive set of clinical isolates derived from different origins and control strains, representative for each serotype was used to "teach" the system to recognize the spectra emitted by the capsular polysaccharides (CP) present on the surface of the clinically relevant strains of S. aureus.

Studies carried out with the high-throughput ANN-assisted FTIR spectroscopy CP typing system yielded overall accuracy of 96.7% for internal validation and 98.2% for external validation. These results support the use of this system for diagnostic as well as large-scale epidemiologic surveillance of S. aureus capsule expression,

Senior author Dr. Monika Ehling-Schulz, professor of functional microbiology at the University of Veterinary Medicine, said, "In principle, germs have two choices when they infect a host: attack or hide—in technical terms virulence or persistence. If they attack, they risk destroying the host and consequently themselves, whereas if they hide, they may be outcompeted by others. A detailed knowledge of the mechanisms of virulence and persistence and the way bacteria switch between them will help us to develop novel and more effective therapies."

A full description of the ANN-assisted FTIR spectroscopy CP typing system was published in the July 2013 issue of the Journal of Clinical Microbiology.

Related Links:
University of Veterinary Medicine

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit
New
Total 25-Hydroxyvitamin D₂ & D₃ Assay
25-OH-VD Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.