LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Interferon Gamma Assay Detects Chronic Q Fever

By LabMedica International staff writers
Posted on 17 Jul 2013
Print article
Image: Coxiella burnetii (Photo courtesy of Rocky Mountain Laboratories).
Image: Coxiella burnetii (Photo courtesy of Rocky Mountain Laboratories).
The diagnosis of Q fever, caused by the intracellular pathogen Coxiella burnetii, relies mainly on serology and skin tests (STs)—both with drawbacks.

A C. burnetii-specific interferon gamma (IFN-γ) production has been used as a diagnostic tool for past Q fever infection that circumvented most of these shortcomings, and was compared with serology and ST.

Scientists at the Radboud University (Nijmegen, The Netherlands) enrolled 1,525 individuals from an endemic area with a risk for chronic Q fever. IFN-γ production was measured after in vitro stimulation of whole blood with C. burnetii antigens. Various formats using different C. burnetii antigens were tested and serology and ST were performed on all individuals.

The amount of IFN-γ was measured by enzyme-linked immunosorbent assay (ELISA). Serological and ST results were unknown to those performing the assay. Net IFN-γ production was expressed as the concentration of IFN-γ in stimulated samples minus that in negative controls. If either IFN-γ production in the negative control exceeded 24 pg/mL, which is three times the lower detection limit of the ELISA, or the IFN-γ production after phytohemagglutinin (PHA) stimulation was less than24 pg/mL without the C. burnetii-stimulated aliquots exceeding 24 pg/mL, then the assay was considered inconclusive.

In all assay formats, C. burnetii-specific IFN-γ production was higher in seropositive or ST-positive subjects than in seronegative and ST-negative subjects. Whole blood incubated for 24 hours with the heat-inactivated laboratory C. burnetii Nine Mile strain showed optimal performance. After excluding subjects with equivocal serology and/or borderline ST results, IFN-γ production was 449 ± 82 pg/mL in 219 positive individuals, but only 21 ± 3 pg/mL in 908 negative subjects. The IFN-γ assay had a sensitivity of 87.0% and the specificity was 90.2%, which was similar to the combination of serology and ST at 83.0% sensitivity and 95.6% specificity.

The authors concluded that specific IFN-γ detection is a novel diagnostic assay for previous C. burnetii infection and shows similar performance and practical advantages over serology and ST. However, they recommend that the assay as being complimentary to serological tests, with added value in cases with equivocal serology. The additional value of the assay in active Q fever disease, both the acute and chronic form, is currently being addressed. The study was originally published online on March 5, 2013, in the journal Clinical Infectious Diseases.

Related Links:

Radboud University



Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Centromere B Assay
Centromere B Test
New
HIV-1 Test
HIV-1 Real Time RT-PCR Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more
Sekisui Diagnostics UK Ltd.