LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Urine Test Identifies Risk of Necrotizing Enterocolitis

By LabMedica International staff writers
Posted on 30 Apr 2013
Print article
In premature babies, abnormal gut bacteria can be found days before the onset of the devastating intestinal disease known as necrotizing enterocolitis (NEC).

Examination of stool samples from preterm infants by molecular techniques and urinary metabolomic analysis has revealed differences between those at risk of NEC and those who will not develop the disease.

Scientists at Cincinnati Children's Hospital (OH, USA) collaborating with other institutes, studied between October 2009 and August 2010, a total of 35 preterm infants of less than 29 weeks gestational age and whose weight was less than 1,200 grams at birth, The primary analysis included 11 infants who developed NEC and 21 control infants. The infant microbiome was analyzed by postnatal periods, 4 to 9 days and 10 to 16 days.

Bacterial DNA was extracted from infant stool samples using one of two methods: phenol-chloroform or the QiaAmp DNA stool kit (Qiagen Sciences; Germantown, MD, USA). The 16S ribosomal ribonucleic acid ( rRNA) gene was amplified and sequenced using 454 FLX Titanium sequencing (454 Life Sciences, Branford, CT, USA). Urine samples were analyzed by nuclear magnetic resonance.

Babies who later went on to develop NEC had a lower diversity of gut bacteria 4 to 9 days after birth, with increased level of Firmicutes or Enterobacteriaceae, but lacked the Propionibacterium found in healthy babies. All of the babies with NEC also had unusual levels of specific bacteria. Babies whose NEC started early, between 7 to 12 days after birth had abnormally high levels of Firmicutes, while babies whose NEC started later, 19 to 31 days, had high levels of Enterobacteriaceae. No difference was found in the relative abundance of Propionibacterium between NEC and control samples collected from days 10 to 16 of life.

No urinary metabolites differed significantly among all NEC cases and controls. However, three metabolites, alanine, pyridoxine (4-pyridoxate) and histidine, significantly distinguished NEC-I and NEC-II from each other as well as one of the NEC sub-types from controls.

Alanine was significantly higher in NEC-I versus NEC-II and NEC-I versus the control samples though the metabolite did not differ between all NEC versus control samples.

Ardythe L. Morrow, PhD, the senior author of the study said, "Our data show that onset of NEC appears to be related to having abnormally high levels of specific bacteria in the gut during the first week or two of life. Our data also indicate that a simple urine test looking at levels of alanine and histidine, which appear altered by these bacteria, can be used early in life to identify babies at risk of NEC." The study was published on April 16, 2013, in the journal Microbiome.

Related Links:

Cincinnati Children's Hospital
Qiagen Sciences
454 Life Sciences


Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED
New
Respiratory QC Panel
Assayed Respiratory Control Panel

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.