First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
By LabMedica International staff writers Posted on 11 Apr 2025 |

Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation, which typically requires daily treatments over several weeks, SBRT is faster and more convenient. However, like all radiation therapies, SBRT can still lead to side effects. While severe side effects are rare, some patients experience moderate toxicity that may require medication and impact their quality of life. Currently, there are no known methods to prevent, slow, or reverse the late effects of radiation toxicity. A common issue after radiation is urinary side effects, such as frequent urination, pain, and an urgent need to urinate, which may not always be manageable in time. These side effects can occur immediately (acute toxicity), develop later (late toxicity), or start early and persist (chronic toxicity). Even with advanced radiation techniques, some patients still face these issues, and predicting how individuals will react to radiation remains difficult.
Researchers at the UCLA Health Jonsson Comprehensive Cancer Center (Los Angeles, CA, USA) have validated a test that can accurately predict which prostate cancer patients are more likely to experience long-lasting urinary side effects following radiation therapy. This test, named PROSTOX, is the first of its kind to use microRNAs to predict toxicity resulting from cancer treatment. By identifying patients most at risk before therapy begins, the test could help reduce the burden of long-term complications. In a study published in Clinical Cancer Research, the UCLA team validated PROSTOX's ability to predict urinary side effects, which can include urinary tract pain, blood in the urine, frequent urination, and urgency or leakage. The research also revealed that various genetic factors are linked to different side effects, highlighting the need for personalized treatment approaches.
Earlier studies by the team had identified that specific inherited genetic differences, especially in areas related to microRNAs, which regulate gene function, could predict the likelihood of developing these side effects. Using this information, they developed the PROSTOX genetic test, which identifies 32 unique mirSNPs (genetic variants in microRNAs) associated with radiation-related side effects. The test categorizes patients into low-risk and high-risk groups for developing severe, long-term urinary issues after SBRT. Their findings showed that patients in the high-risk group were 10 to 12 times more likely to experience these problems. The new study aimed to validate PROSTOX in a separate group of 148 prostate cancer patients who were undergoing either MRI- or CT-guided SBRT as part of the MIRAGE phase III clinical trial at UCLA. Additionally, the team employed machine learning, a form of artificial intelligence, to create models that could predict acute and chronic urinary toxicity.
The results confirmed that PROSTOX can accurately predict which patients will experience significant late urinary toxicity, regardless of whether MRI or CT guided the radiation treatment. Furthermore, the test was unaffected by other clinical factors like age or radiation dose, suggesting that it detects an independent, genetic risk for toxicity. The study also distinguished between two types of radiation-induced urinary side effects: chronic toxicity and late toxicity. Genetic analysis revealed that these two forms of toxicity have distinct genetic signatures, implying different underlying biological mechanisms. Late toxicity appears to be associated with immune system dysfunction and long-term inflammation, while chronic toxicity may be more influenced by the advancements in radiation technology, indicating that improved techniques could reduce these side effects. Based on these findings, the researchers emphasize the importance of integrating genetic testing with modern radiation therapy to personalize prostate cancer treatments further. The team is now working to expand the validation of PROSTOX in larger patient populations and is also investigating similar genetic biomarkers to predict side effects in other cancers treated with radiation and immunotherapy.
“We’ve always known that some men develop these life-altering side effects that they will carry through the remainder of their lives, but until now, we didn’t have a way to predict who,” said Joanne Weidhaas, MD, PhD, professor of radiation oncology and vice chair of molecular and cellular oncology at the David Geffen School of Medicine at UCLA, and senior author of the study. “What makes PROSTOX different is that it looks at a patient’s unique genetics to estimate their personal risk of developing side effects from radiation. This helps doctors and patients choose the safest treatment and avoid unnecessary toxicities.”
Latest Molecular Diagnostics News
- RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms
- Novel Cell-Based Assay Provides Sensitive and Specific Autoantibody Detection in Demyelination
- Novel Point-of-Care Technology Delivers Accurate HIV Results in Minutes
- Blood Test Rules Out Future Dementia Risk
- D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
- New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
- Chemiluminescence Immunoassays Support Diagnosis of Alzheimer’s Disease
- Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
- Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
- Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
- Rapid Diagnostic Test to Halt Mother-To-Child Hepatitis B Transmission
- Simple Urine Test Could Help Patients Avoid Invasive Scans for Kidney Cancer
- New Bowel Cancer Blood Test to Improve Early Detection
- Refined Test Improves Parkinson’s Disease Diagnosis
- New Method Rapidly Diagnoses CVD Risk Via Molecular Blood Screening
- Blood Test Shows Promise for Early Detection of Dementia
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Deliver Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Advanced Imaging Reveals Mechanisms Causing Autoimmune Disease
Myasthenia gravis, an autoimmune disease, leads to muscle weakness that can affect a range of muscles, including those needed for basic actions like blinking, smiling, or moving. Researchers have long... Read more
AI Model Effectively Predicts Patient Outcomes in Common Lung Cancer Type
Lung adenocarcinoma, the most common form of non-small cell lung cancer (NSCLC), typically adopts one of six distinct growth patterns, often combining multiple patterns within a single tumor.... Read moreTechnology
view channel
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more