First Of Its Kind Test Uses microRNAs to Predict Toxicity from Cancer Therapy
|
By LabMedica International staff writers Posted on 11 Apr 2025 |

Many men with early-stage prostate cancer receive stereotactic body radiotherapy (SBRT), a highly precise form of radiation treatment that is completed in just five sessions. Compared to traditional radiation, which typically requires daily treatments over several weeks, SBRT is faster and more convenient. However, like all radiation therapies, SBRT can still lead to side effects. While severe side effects are rare, some patients experience moderate toxicity that may require medication and impact their quality of life. Currently, there are no known methods to prevent, slow, or reverse the late effects of radiation toxicity. A common issue after radiation is urinary side effects, such as frequent urination, pain, and an urgent need to urinate, which may not always be manageable in time. These side effects can occur immediately (acute toxicity), develop later (late toxicity), or start early and persist (chronic toxicity). Even with advanced radiation techniques, some patients still face these issues, and predicting how individuals will react to radiation remains difficult.
Researchers at the UCLA Health Jonsson Comprehensive Cancer Center (Los Angeles, CA, USA) have validated a test that can accurately predict which prostate cancer patients are more likely to experience long-lasting urinary side effects following radiation therapy. This test, named PROSTOX, is the first of its kind to use microRNAs to predict toxicity resulting from cancer treatment. By identifying patients most at risk before therapy begins, the test could help reduce the burden of long-term complications. In a study published in Clinical Cancer Research, the UCLA team validated PROSTOX's ability to predict urinary side effects, which can include urinary tract pain, blood in the urine, frequent urination, and urgency or leakage. The research also revealed that various genetic factors are linked to different side effects, highlighting the need for personalized treatment approaches.
Earlier studies by the team had identified that specific inherited genetic differences, especially in areas related to microRNAs, which regulate gene function, could predict the likelihood of developing these side effects. Using this information, they developed the PROSTOX genetic test, which identifies 32 unique mirSNPs (genetic variants in microRNAs) associated with radiation-related side effects. The test categorizes patients into low-risk and high-risk groups for developing severe, long-term urinary issues after SBRT. Their findings showed that patients in the high-risk group were 10 to 12 times more likely to experience these problems. The new study aimed to validate PROSTOX in a separate group of 148 prostate cancer patients who were undergoing either MRI- or CT-guided SBRT as part of the MIRAGE phase III clinical trial at UCLA. Additionally, the team employed machine learning, a form of artificial intelligence, to create models that could predict acute and chronic urinary toxicity.
The results confirmed that PROSTOX can accurately predict which patients will experience significant late urinary toxicity, regardless of whether MRI or CT guided the radiation treatment. Furthermore, the test was unaffected by other clinical factors like age or radiation dose, suggesting that it detects an independent, genetic risk for toxicity. The study also distinguished between two types of radiation-induced urinary side effects: chronic toxicity and late toxicity. Genetic analysis revealed that these two forms of toxicity have distinct genetic signatures, implying different underlying biological mechanisms. Late toxicity appears to be associated with immune system dysfunction and long-term inflammation, while chronic toxicity may be more influenced by the advancements in radiation technology, indicating that improved techniques could reduce these side effects. Based on these findings, the researchers emphasize the importance of integrating genetic testing with modern radiation therapy to personalize prostate cancer treatments further. The team is now working to expand the validation of PROSTOX in larger patient populations and is also investigating similar genetic biomarkers to predict side effects in other cancers treated with radiation and immunotherapy.
“We’ve always known that some men develop these life-altering side effects that they will carry through the remainder of their lives, but until now, we didn’t have a way to predict who,” said Joanne Weidhaas, MD, PhD, professor of radiation oncology and vice chair of molecular and cellular oncology at the David Geffen School of Medicine at UCLA, and senior author of the study. “What makes PROSTOX different is that it looks at a patient’s unique genetics to estimate their personal risk of developing side effects from radiation. This helps doctors and patients choose the safest treatment and avoid unnecessary toxicities.”
Latest Molecular Diagnostics News
- Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
- Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
- Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs
- “Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
- New Tool Maps Chromosome Shifts in Cancer Cells to Predict Tumor Evolution
- Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
- Newly-Identified Parkinson’s Biomarkers to Enable Early Diagnosis Via Blood Tests
- New Blood Test Could Detect Pancreatic Cancer at More Treatable Stage
- Liquid Biopsy Could Replace Surgical Biopsy for Diagnosing Primary Central Nervous Lymphoma
- New Tool Reveals Hidden Metabolic Weakness in Blood Cancers
- World's First Blood Test Distinguishes Between Benign and Cancerous Lung Nodules
- Rapid Test Uses Mobile Phone to Identify Severe Imported Malaria Within Minutes
- Gut Microbiome Signatures Predict Long-Term Outcomes in Acute Pancreatitis
- Blood Test Promises Faster Answers for Deadly Fungal Infections
- Blood Test Could Detect Infection Exposure History
- Urine-Based MRD Test Tracks Response to Bladder Cancer Surgery
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







