LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Newly Identified Stroke Biomarkers Pave Way for Blood Tests to Quickly Diagnose Brain Injuries

By LabMedica International staff writers
Posted on 05 Mar 2025
Print article
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)
Image: A coronal MRI section shows a high-intensity focused ultrasound lesion in the left thalamus of the brain (Photo courtesy of UT Southwestern Medical Center)

Each year, nearly 800,000 individuals in the U.S. experience a stroke, which occurs when blood flow to specific areas of the brain is insufficient, causing brain cells to die due to a lack of oxygen. While magnetic resonance imaging (MRI) is a valuable diagnostic tool for stroke, delays in treatment can lead to worse outcomes. In 2016, the FDA approved a new therapy for tremor disorders, involving high-intensity focused ultrasound (HIFU) to target and destroy a portion of the thalamus, a brain area often responsible for tremors. A recent study has shown that a molecule known as glial fibrillary acidic protein (GFAP) significantly increases in the blood of patients undergoing HIFU treatment for tremors, which causes damage similar to that of a small stroke. This finding, published in Brain Communications, suggests GFAP could be a promising biomarker for stroke and may eventually lead to blood tests for the rapid diagnosis of brain injuries.

In 2022, researchers at UT Southwestern Medical Center (Dallas, TX, USA) reported a technique that improved HIFU targeting for tremor treatment. Recently, the team noticed that the controlled brain injury caused by this therapy appeared similar to a stroke in brain imaging, with both types of damage sharing features, particularly in how the brain responds to these injuries. The researchers hypothesized that this similarity might help achieve the long-sought goal of diagnosing stroke and brain injuries through blood markers. Previous attempts have faced challenges such as a lack of blood samples taken before a stroke, differences in the locations of brain injuries in stroke patients, uncertainty around the timing of strokes, and variations among patients.

The UT Southwestern team believed that using HIFU as a research tool could help overcome these obstacles. In the study, 30 patients with tremor-dominant Parkinson’s disease or essential tremor, another movement disorder, received HIFU treatment. Blood samples were collected before the procedure and at one hour and 48 hours post-treatment. The researchers then measured concentrations of five molecular markers previously identified as potentially useful for diagnosing brain injuries: GFAP, neurofilament light chain, amyloid-beta 40, amyloid-beta 42, and phosphorylated tau 181 (pTau-181). Forty-eight hours following HIFU treatment, all markers except pTau-181 showed significant increases, with GFAP rising the most—more than four times its pre-treatment levels on average.

These results suggest that GFAP could serve as a reliable marker for stroke and other brain injuries. The researchers plan to further investigate GFAP levels at various time points following HIFU treatment to assess its potential as a diagnostic marker for brain injuries. Additionally, they are studying other molecules that might indicate brain injuries even earlier than GFAP. The team has also begun collecting blood from emergency stroke patients to determine whether GFAP levels are elevated in this group.

“This is the first study to use HIFU as a controlled model to evaluate brain injury biomarker dynamics,” said Bhavya R. Shah, M.D., Associate Professor of Radiology and Neurological Surgery at UT Southwestern as well as in the Advanced Imaging Research Center. “The ability to pair a timed pre- and post-HIFU measurement with precise lesion delivery is unprecedented and offers extraordinary potential for validating blood biomarkers of brain injury in a way that has not been done before.”

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TORCH Infections Test
TORCH Panel
New
Vaginitis Test
Allplex Vaginitis Screening Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.