LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Low-Cost, Fast Response Sensor Enables Early and Accurate Detection of Lung Cancer

By LabMedica International staff writers
Posted on 07 Feb 2025
Print article
Image: The new screening device has shown promise for early lung cancer detection (Photo courtesy of Biosensors, DOI: 10.3390/bios14120624)
Image: The new screening device has shown promise for early lung cancer detection (Photo courtesy of Biosensors, DOI: 10.3390/bios14120624)

Cancer biomarkers are valuable tools for early diagnosis as their concentration in body fluids, such as serum, can be measured to detect the disease at an earlier stage. Additionally, serum levels of these biomarkers can change as cancer treatment progresses, allowing for monitoring that helps adjust treatment doses and assess its effectiveness, thus enabling precision medicine that can improve patient outcomes. However, the detection and quantification of cancer biomarkers are typically expensive, time-consuming, and require highly trained personnel, limiting these processes to specialized laboratory settings. In contrast, point-of-care testing (POCT) is recognized for its ability to speed up diagnosis, optimize patient care, and reduce healthcare costs. Biosensors, which are low-cost, non-invasive (or minimally invasive) devices, are ideal for POCT, offering a way to measure biomarkers' concentrations and enabling early cancer detection and therapy monitoring.

Researchers from Cranfield University (Cranfield, UK) have developed a new, low-cost, and fast-response sensor to detect lung cancer biomarkers, paving the way for screening tools that could detect the disease even before symptoms appear. Similar to the design of glucose monitoring devices, the sensor provides results from a blood sample in just 40 minutes. This innovative technology, featured in the journal Biosensors, has the potential to assist clinicians in identifying patients at higher risk for lung cancer and in tailoring treatments for those already diagnosed, thus facilitating a ‘precision medicine’ approach. Over the course of a three-year research project, the team created the sensors to screen for two key lung cancer biomarkers in a blood sample and successfully demonstrated the concept in a laboratory setting.

Their study focused on developing highly sensitive sensors for two primary lung cancer biomarkers: neuron-specific enolase (NSE) and carcinoembryonic antigen (CEA). The sensors were tested with both buffer and human samples and achieved clinically relevant detection limits for both biomarkers. The findings suggest that this technology holds considerable promise as a valuable tool for the early and accurate detection of lung cancer. The rapid and straightforward test enables clinical staff to identify individuals at higher risk of lung cancer and refer them for further diagnostic testing. This proactive strategy supports early detection, which can lead to improved outcomes. Furthermore, the test can be utilized during treatment to monitor how chemotherapy or other therapies are impacting the cancer.

“At the moment lung cancer screening tests can be expensive and take a long time,” said Dr. Iva Chianella, Senior Lecturer in Bio-sensors and Functional Polymers. “Although it’s early stages, the sensor we have developed holds great promise of early detection, which can lead to prompt treatments with higher patients’ survival rates.”

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Anti-HHV-6 IgM Assay
anti-HHV-6 IgM ELISA (semiquant.)
New
Auto Clinical Chemistry Analyzer
cobas c 703

Print article

Channels

Molecular Diagnostics

view channel
Image: The experimental blood test accurately indicates severity and predicts potential recovery from spinal cord injury (Photo courtesy of 123RF)

Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury

The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more

Industry

view channel
Image: Tumor-associated macrophages visualized using the Multiomic LS Assay (Photo courtesy of ACD)

Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration

Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Sekisui Diagnostics UK Ltd.