LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lab-On-Chip Platform to Expedite Cancer Diagnoses

By LabMedica International staff writers
Posted on 30 Jan 2025
Image: Illustration of fabricated optimal acousto-microfluidic chip for scale (Photo courtesy of Afshin Kouhkord and Naserifar Naser)
Image: Illustration of fabricated optimal acousto-microfluidic chip for scale (Photo courtesy of Afshin Kouhkord and Naserifar Naser)

Cancer was responsible for nearly 10 million deaths in 2020, accounting for almost one in every six deaths worldwide. Timely cancer diagnosis remains a major challenge, as abnormal cellular growth is often detected too late. Early diagnosis is critical, and recent research has focused on detecting rare circulating tumor cells (CTCs) in peripheral blood as noninvasive markers for diagnosis. However, isolating target cells for examination is inherently difficult. Traditional methods typically require complex sample preparation, substantial equipment, and large sample volumes, and even then, it remains challenging to efficiently separate the cells.

Researchers from K. N. Toosi University of Technology (Tehran, Iran) have now introduced a groundbreaking system that uses standing surface acoustic waves to separate CTCs from red blood cells with remarkable precision and efficiency. The system developed by the team integrates advanced computational modeling, experimental analysis, and artificial intelligence (AI) algorithms to analyze complex acoustofluidic phenomena. By combining machine learning algorithms with data-driven modeling, they were able to fine-tune the system for optimal recovery and cell separation rates. The platform, described in the journal Physics of Fluids, achieves 100% recovery under ideal conditions, while significantly reducing energy consumption through precise control of acoustic pressures and flow rates.

While many methods for enriching particles through microfluidics have been developed, those using acoustofluidics stand out due to their biocompatibility, ability to generate high-force magnitudes at MPa pressure ranges, and production of cell-scale wavelengths. The researchers' novel approach incorporates dualized pressure acoustic fields, which enhance the impact on target cells, and positions them strategically at critical points in the microchannel geometry on a lithium niobate substrate. By applying acoustic pressure within the microchannel, the system generates reliable datasets that reveal cell interaction times and trajectory patterns, helping to predict tumor cell migration.

“We have produced an advanced, lab-on-chip platform that enables real-time, energy-efficient, and highly accurate cell separation,” said researcher Afshin Kouhkord. “The technology promises to improve CTC separation efficiency and open new possibilities for earlier and more effective cancer diagnosis. It also paves the way for microengineering and applied AI in personalized medicine and cancer diagnostics.”

Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Rapid Molecular Testing Device
FlashDetect Flash10

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more